1 | r""" |
---|
2 | Definition |
---|
3 | ---------- |
---|
4 | |
---|
5 | Calculates the form factor for a rectangular solid with a core-shell structure. |
---|
6 | The thickness and the scattering length density of the shell or |
---|
7 | "rim" can be different on each (pair) of faces. |
---|
8 | |
---|
9 | The form factor is normalized by the particle volume $V$ such that |
---|
10 | |
---|
11 | .. math:: |
---|
12 | |
---|
13 | I(q) = \text{scale}\frac{\langle P(q,\alpha,\beta) \rangle}{V} |
---|
14 | + \text{background} |
---|
15 | |
---|
16 | where $\langle \ldots \rangle$ is an average over all possible orientations |
---|
17 | of the rectangular solid. |
---|
18 | |
---|
19 | The function calculated is the form factor of the rectangular solid below. |
---|
20 | The core of the solid is defined by the dimensions $A$, $B$, $C$ such that |
---|
21 | $A < B < C$. |
---|
22 | |
---|
23 | .. figure:: img/parallelepiped_geometry.jpg |
---|
24 | |
---|
25 | Core of the core shell Parallelepiped with the corresponding definition |
---|
26 | of sides. |
---|
27 | |
---|
28 | |
---|
29 | There are rectangular "slabs" of thickness $t_A$ that add to the $A$ dimension |
---|
30 | (on the $BC$ faces). There are similar slabs on the $AC$ $(=t_B)$ and $AB$ |
---|
31 | $(=t_C)$ faces. The projection in the $AB$ plane is then |
---|
32 | |
---|
33 | .. figure:: img/core_shell_parallelepiped_projection.jpg |
---|
34 | |
---|
35 | AB cut through the core-shell parllelipiped showing the cross secion of |
---|
36 | four of the six shell slabs |
---|
37 | |
---|
38 | The volume of the solid is |
---|
39 | |
---|
40 | .. math:: |
---|
41 | |
---|
42 | V = ABC + 2t_ABC + 2t_BAC + 2t_CAB |
---|
43 | |
---|
44 | **meaning that there are "gaps" at the corners of the solid.** |
---|
45 | |
---|
46 | The intensity calculated follows the :ref:`parallelepiped` model, with the |
---|
47 | core-shell intensity being calculated as the square of the sum of the |
---|
48 | amplitudes of the core and the slabs on the edges. |
---|
49 | |
---|
50 | the scattering amplitude is computed for a particular orientation of the |
---|
51 | core-shell parallelepiped with respect to the scattering vector and then |
---|
52 | averaged over all possible orientations, where $\alpha$ is the angle between |
---|
53 | the $z$ axis and the $C$ axis of the parallelepiped, $\beta$ is |
---|
54 | the angle between projection of the particle in the $xy$ detector plane |
---|
55 | and the $y$ axis. |
---|
56 | |
---|
57 | .. math:: |
---|
58 | |
---|
59 | P(q)=\int_{0}^{\pi/2}\int_{0}^{\pi/2}F^2(q,\alpha,\beta) \ cos\alpha |
---|
60 | \ d\alpha \ d\beta |
---|
61 | |
---|
62 | and |
---|
63 | |
---|
64 | .. math:: |
---|
65 | |
---|
66 | F(q) |
---|
67 | &= (\rho_\text{core}-\rho_\text{solvent}) |
---|
68 | S(Q_A, A) S(Q_B, B) S(Q_C, C) \\ |
---|
69 | &+ (\rho_\text{A}-\rho_\text{solvent}) |
---|
70 | \left[S(Q_A, A+2t_A) - S(Q_A, A)\right] S(Q_B, B) S(Q_C, C) \\ |
---|
71 | &+ (\rho_\text{B}-\rho_\text{solvent}) |
---|
72 | S(Q_A, A) \left[S(Q_B, B+2t_B) - S(Q_B, B)\right] S(Q_C, C) \\ |
---|
73 | &+ (\rho_\text{C}-\rho_\text{solvent}) |
---|
74 | S(Q_A, A) S(Q_B, B) \left[S(Q_C, C+2t_C) - S(Q_C, C)\right] |
---|
75 | |
---|
76 | with |
---|
77 | |
---|
78 | .. math:: |
---|
79 | |
---|
80 | S(Q, L) = L \frac{\sin \tfrac{1}{2} Q L}{\tfrac{1}{2} Q L} |
---|
81 | |
---|
82 | and |
---|
83 | |
---|
84 | .. math:: |
---|
85 | |
---|
86 | Q_A &= q \sin\alpha \sin\beta \\ |
---|
87 | Q_B &= q \sin\alpha \cos\beta \\ |
---|
88 | Q_C &= q \cos\alpha |
---|
89 | |
---|
90 | |
---|
91 | where $\rho_\text{core}$, $\rho_\text{A}$, $\rho_\text{B}$ and $\rho_\text{C}$ |
---|
92 | are the scattering length of the parallelepiped core, and the rectangular |
---|
93 | slabs of thickness $t_A$, $t_B$ and $t_C$, respectively. $\rho_\text{solvent}$ |
---|
94 | is the scattering length of the solvent. |
---|
95 | |
---|
96 | FITTING NOTES |
---|
97 | ~~~~~~~~~~~~~ |
---|
98 | |
---|
99 | If the scale is set equal to the particle volume fraction, $\phi$, the returned |
---|
100 | value is the scattered intensity per unit volume, $I(q) = \phi P(q)$. However, |
---|
101 | **no interparticle interference effects are included in this calculation.** |
---|
102 | |
---|
103 | There are many parameters in this model. Hold as many fixed as possible with |
---|
104 | known values, or you will certainly end up at a solution that is unphysical. |
---|
105 | |
---|
106 | The returned value is in units of |cm^-1|, on absolute scale. |
---|
107 | |
---|
108 | NB: The 2nd virial coefficient of the core_shell_parallelepiped is calculated |
---|
109 | based on the the averaged effective radius $(=\sqrt{(A+2t_A)(B+2t_B)/\pi})$ |
---|
110 | and length $(C+2t_C)$ values, after appropriately sorting the three dimensions |
---|
111 | to give an oblate or prolate particle, to give an effective radius, |
---|
112 | for $S(q)$ when $P(q) * S(q)$ is applied. |
---|
113 | |
---|
114 | For 2d data the orientation of the particle is required, described using |
---|
115 | angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further |
---|
116 | details of the calculation and angular dispersions see :ref:`orientation`. |
---|
117 | The angle $\Psi$ is the rotational angle around the *long_c* axis. For example, |
---|
118 | $\Psi = 0$ when the *short_b* axis is parallel to the *x*-axis of the detector. |
---|
119 | |
---|
120 | For 2d, constraints must be applied during fitting to ensure that the |
---|
121 | inequality $A < B < C$ is not violated, and hence the correct definition |
---|
122 | of angles is preserved. The calculation will not report an error, |
---|
123 | but the results may be not correct. |
---|
124 | |
---|
125 | .. figure:: img/parallelepiped_angle_definition.png |
---|
126 | |
---|
127 | Definition of the angles for oriented core-shell parallelepipeds. |
---|
128 | Note that rotation $\theta$, initially in the $xz$ plane, is carried |
---|
129 | out first, then rotation $\phi$ about the $z$ axis, finally rotation |
---|
130 | $\Psi$ is now around the axis of the cylinder. The neutron or X-ray |
---|
131 | beam is along the $z$ axis. |
---|
132 | |
---|
133 | .. figure:: img/parallelepiped_angle_projection.png |
---|
134 | |
---|
135 | Examples of the angles for oriented core-shell parallelepipeds against the |
---|
136 | detector plane. |
---|
137 | |
---|
138 | References |
---|
139 | ---------- |
---|
140 | |
---|
141 | .. [#] P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211 |
---|
142 | Equations (1), (13-14). (in German) |
---|
143 | .. [#] D Singh (2009). *Small angle scattering studies of self assembly in |
---|
144 | lipid mixtures*, Johns Hopkins University Thesis (2009) 223-225. `Available |
---|
145 | from Proquest <http://search.proquest.com/docview/304915826?accountid |
---|
146 | =26379>`_ |
---|
147 | |
---|
148 | Authorship and Verification |
---|
149 | ---------------------------- |
---|
150 | |
---|
151 | * **Author:** NIST IGOR/DANSE **Date:** pre 2010 |
---|
152 | * **Converted to sasmodels by:** Miguel Gonzales **Date:** February 26, 2016 |
---|
153 | * **Last Modified by:** Paul Kienzle **Date:** October 17, 2017 |
---|
154 | * Cross-checked against hollow rectangular prism and rectangular prism for |
---|
155 | equal thickness overlapping sides, and by Monte Carlo sampling of points |
---|
156 | within the shape for non-uniform, non-overlapping sides. |
---|
157 | """ |
---|
158 | |
---|
159 | import numpy as np |
---|
160 | from numpy import pi, inf, sqrt, cos, sin |
---|
161 | |
---|
162 | name = "core_shell_parallelepiped" |
---|
163 | title = "Rectangular solid with a core-shell structure." |
---|
164 | description = """ |
---|
165 | P(q)= |
---|
166 | """ |
---|
167 | category = "shape:parallelepiped" |
---|
168 | |
---|
169 | # ["name", "units", default, [lower, upper], "type","description"], |
---|
170 | parameters = [["sld_core", "1e-6/Ang^2", 1, [-inf, inf], "sld", |
---|
171 | "Parallelepiped core scattering length density"], |
---|
172 | ["sld_a", "1e-6/Ang^2", 2, [-inf, inf], "sld", |
---|
173 | "Parallelepiped A rim scattering length density"], |
---|
174 | ["sld_b", "1e-6/Ang^2", 4, [-inf, inf], "sld", |
---|
175 | "Parallelepiped B rim scattering length density"], |
---|
176 | ["sld_c", "1e-6/Ang^2", 2, [-inf, inf], "sld", |
---|
177 | "Parallelepiped C rim scattering length density"], |
---|
178 | ["sld_solvent", "1e-6/Ang^2", 6, [-inf, inf], "sld", |
---|
179 | "Solvent scattering length density"], |
---|
180 | ["length_a", "Ang", 35, [0, inf], "volume", |
---|
181 | "Shorter side of the parallelepiped"], |
---|
182 | ["length_b", "Ang", 75, [0, inf], "volume", |
---|
183 | "Second side of the parallelepiped"], |
---|
184 | ["length_c", "Ang", 400, [0, inf], "volume", |
---|
185 | "Larger side of the parallelepiped"], |
---|
186 | ["thick_rim_a", "Ang", 10, [0, inf], "volume", |
---|
187 | "Thickness of A rim"], |
---|
188 | ["thick_rim_b", "Ang", 10, [0, inf], "volume", |
---|
189 | "Thickness of B rim"], |
---|
190 | ["thick_rim_c", "Ang", 10, [0, inf], "volume", |
---|
191 | "Thickness of C rim"], |
---|
192 | ["theta", "degrees", 0, [-360, 360], "orientation", |
---|
193 | "c axis to beam angle"], |
---|
194 | ["phi", "degrees", 0, [-360, 360], "orientation", |
---|
195 | "rotation about beam"], |
---|
196 | ["psi", "degrees", 0, [-360, 360], "orientation", |
---|
197 | "rotation about c axis"], |
---|
198 | ] |
---|
199 | |
---|
200 | source = ["lib/gauss76.c", "core_shell_parallelepiped.c"] |
---|
201 | |
---|
202 | |
---|
203 | def ER(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c): |
---|
204 | """ |
---|
205 | Return equivalent radius (ER) |
---|
206 | """ |
---|
207 | from .parallelepiped import ER as ER_p |
---|
208 | |
---|
209 | a = length_a + 2*thick_rim_a |
---|
210 | b = length_b + 2*thick_rim_b |
---|
211 | c = length_c + 2*thick_rim_c |
---|
212 | return ER_p(a, b, c) |
---|
213 | |
---|
214 | # VR defaults to 1.0 |
---|
215 | |
---|
216 | def random(): |
---|
217 | outer = 10**np.random.uniform(1, 4.7, size=3) |
---|
218 | thick = np.random.beta(0.5, 0.5, size=3)*(outer-2) + 1 |
---|
219 | length = outer - thick |
---|
220 | pars = dict( |
---|
221 | length_a=length[0], |
---|
222 | length_b=length[1], |
---|
223 | length_c=length[2], |
---|
224 | thick_rim_a=thick[0], |
---|
225 | thick_rim_b=thick[1], |
---|
226 | thick_rim_c=thick[2], |
---|
227 | ) |
---|
228 | return pars |
---|
229 | |
---|
230 | # parameters for demo |
---|
231 | demo = dict(scale=1, background=0.0, |
---|
232 | sld_core=1, sld_a=2, sld_b=4, sld_c=2, sld_solvent=6, |
---|
233 | length_a=35, length_b=75, length_c=400, |
---|
234 | thick_rim_a=10, thick_rim_b=10, thick_rim_c=10, |
---|
235 | theta=0, phi=0, psi=0, |
---|
236 | length_a_pd=0.1, length_a_pd_n=1, |
---|
237 | length_b_pd=0.1, length_b_pd_n=1, |
---|
238 | length_c_pd=0.1, length_c_pd_n=1, |
---|
239 | thick_rim_a_pd=0.1, thick_rim_a_pd_n=1, |
---|
240 | thick_rim_b_pd=0.1, thick_rim_b_pd_n=1, |
---|
241 | thick_rim_c_pd=0.1, thick_rim_c_pd_n=1, |
---|
242 | theta_pd=10, theta_pd_n=1, |
---|
243 | phi_pd=10, phi_pd_n=1, |
---|
244 | psi_pd=10, psi_pd_n=1) |
---|
245 | |
---|
246 | # rkh 7/4/17 add random unit test for 2d, note make all params different, |
---|
247 | # 2d values not tested against other codes or models |
---|
248 | if 0: # pak: model rewrite; need to update tests |
---|
249 | qx, qy = 0.2 * cos(pi/6.), 0.2 * sin(pi/6.) |
---|
250 | tests = [[{}, 0.2, 0.533149288477], |
---|
251 | [{}, [0.2], [0.533149288477]], |
---|
252 | [{'theta':10.0, 'phi':20.0}, (qx, qy), 0.0853299803222], |
---|
253 | [{'theta':10.0, 'phi':20.0}, [(qx, qy)], [0.0853299803222]], |
---|
254 | ] |
---|
255 | del qx, qy # not necessary to delete, but cleaner |
---|