source: sasmodels/sasmodels/models/core_shell_parallelepiped.py @ f89ec96

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since f89ec96 was f89ec96, checked in by butler, 6 years ago

Update Verification section

  • Property mode set to 100644
File size: 11.1 KB
RevLine 
[44bd2be]1r"""
[5810f00]2Definition
3----------
4
[44bd2be]5Calculates the form factor for a rectangular solid with a core-shell structure.
[96153e4]6The thickness and the scattering length density of the shell or "rim" can be
7different on each (pair) of faces. The three dimensions of the core of the
8parallelepiped (strictly here a cuboid) may be given in *any* size order as
9long as the particles are randomly oriented (i.e. take on all possible
[fc7bcd5]10orientations see notes on 2D below). To avoid multiple fit solutions,
11especially with Monte-Carlo fit methods, it may be advisable to restrict their
[96153e4]12ranges. There may be a number of closely similar "best fits", so some trial and
13error, or fixing of some dimensions at expected values, may help.
[cb0dc22]14
[500128b]15The form factor is normalized by the particle volume $V$ such that
[44bd2be]16
[500128b]17.. math::
18
[fc7bcd5]19    I(q) = \frac{\text{scale}}{V} \langle P(q,\alpha,\beta) \rangle
[367886f]20    + \text{background}
[44bd2be]21
[500128b]22where $\langle \ldots \rangle$ is an average over all possible orientations
[dbf1a60]23of the rectangular solid, and the usual $\Delta \rho^2 \ V^2$ term cannot be
24pulled out of the form factor term due to the multiple slds in the model.
[44bd2be]25
[96153e4]26The core of the solid is defined by the dimensions $A$, $B$, $C$ here shown
27such that $A < B < C$.
[44bd2be]28
[5bc373b]29.. figure:: img/parallelepiped_geometry.jpg
30
[331870d]31   Core of the core shell parallelepiped with the corresponding definition
[5bc373b]32   of sides.
33
[44bd2be]34
[500128b]35There are rectangular "slabs" of thickness $t_A$ that add to the $A$ dimension
36(on the $BC$ faces). There are similar slabs on the $AC$ $(=t_B)$ and $AB$
[dbf1a60]37$(=t_C)$ faces. The projection in the $AB$ plane is
[44bd2be]38
[5bc373b]39.. figure:: img/core_shell_parallelepiped_projection.jpg
40
[331870d]41   AB cut through the core-shell parallelipiped showing the cross secion of
42   four of the six shell slabs. As can be seen, this model leaves **"gaps"**
[dbf1a60]43   at the corners of the solid.
[44bd2be]44
[dbf1a60]45
46The total volume of the solid is thus given as
[44bd2be]47
48.. math::
49
50    V = ABC + 2t_ABC + 2t_BAC + 2t_CAB
51
[5810f00]52The intensity calculated follows the :ref:`parallelepiped` model, with the
53core-shell intensity being calculated as the square of the sum of the
[dbf1a60]54amplitudes of the core and the slabs on the edges. The scattering amplitude is
55computed for a particular orientation of the core-shell parallelepiped with
56respect to the scattering vector and then averaged over all possible
57orientations, where $\alpha$ is the angle between the $z$ axis and the $C$ axis
58of the parallelepiped, and $\beta$ is the angle between the projection of the
59particle in the $xy$ detector plane and the $y$ axis.
[44bd2be]60
[5810f00]61.. math::
[4493288]62
[dbf1a60]63    P(q)=\frac {\int_{0}^{\pi/2}\int_{0}^{\pi/2}F^2(q,\alpha,\beta) \ sin\alpha
64    \ d\alpha \ d\beta} {\int_{0}^{\pi/2} \ sin\alpha \ d\alpha \ d\beta}
[367886f]65
66and
67
68.. math::
69
[dbf1a60]70    F(q,\alpha,\beta)
[4493288]71    &= (\rho_\text{core}-\rho_\text{solvent})
72       S(Q_A, A) S(Q_B, B) S(Q_C, C) \\
73    &+ (\rho_\text{A}-\rho_\text{solvent})
[5bc373b]74        \left[S(Q_A, A+2t_A) - S(Q_A, A)\right] S(Q_B, B) S(Q_C, C) \\
[4493288]75    &+ (\rho_\text{B}-\rho_\text{solvent})
76        S(Q_A, A) \left[S(Q_B, B+2t_B) - S(Q_B, B)\right] S(Q_C, C) \\
77    &+ (\rho_\text{C}-\rho_\text{solvent})
78        S(Q_A, A) S(Q_B, B) \left[S(Q_C, C+2t_C) - S(Q_C, C)\right]
[393facf]79
80with
[5810f00]81
[393facf]82.. math::
[5810f00]83
[331870d]84    S(Q_X, L) = L \frac{\sin (\tfrac{1}{2} Q_X L)}{\tfrac{1}{2} Q_X L}
[4493288]85
86and
87
88.. math::
[5810f00]89
[5bc373b]90    Q_A &= q \sin\alpha \sin\beta \\
91    Q_B &= q \sin\alpha \cos\beta \\
92    Q_C &= q \cos\alpha
[4493288]93
94
95where $\rho_\text{core}$, $\rho_\text{A}$, $\rho_\text{B}$ and $\rho_\text{C}$
[331870d]96are the scattering lengths of the parallelepiped core, and the rectangular
[4493288]97slabs of thickness $t_A$, $t_B$ and $t_C$, respectively. $\rho_\text{solvent}$
98is the scattering length of the solvent.
[44bd2be]99
[dbf1a60]100.. note::
101
102   the code actually implements two substitutions: $d(cos\alpha)$ is
103   substituted for -$sin\alpha \ d\alpha$ (note that in the
104   :ref:`parallelepiped` code this is explicitly implemented with
105   $\sigma = cos\alpha$), and $\beta$ is set to $\beta = u \pi/2$ so that
106   $du = \pi/2 \ d\beta$.  Thus both integrals go from 0 to 1 rather than 0
107   to $\pi/2$.
108
[44bd2be]109FITTING NOTES
[4493288]110~~~~~~~~~~~~~
111
[fc7bcd5]112#. There are many parameters in this model. Hold as many fixed as possible with
113   known values, or you will certainly end up at a solution that is unphysical.
114
115#. The 2nd virial coefficient of the core_shell_parallelepiped is calculated
116   based on the the averaged effective radius $(=\sqrt{(A+2t_A)(B+2t_B)/\pi})$
117   and length $(C+2t_C)$ values, after appropriately sorting the three
118   dimensions to give an oblate or prolate particle, to give an effective radius
119   for $S(q)$ when $P(q) * S(q)$ is applied.
120
121#. For 2d data the orientation of the particle is required, described using
122   angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, where $\theta$
123   and $\phi$ define the orientation of the director in the laboratry reference
124   frame of the beam direction ($z$) and detector plane ($x-y$ plane), while
125   the angle $\Psi$ is effectively the rotational angle around the particle
126   $C$ axis. For $\theta = 0$ and $\phi = 0$, $\Psi = 0$ corresponds to the
127   $B$ axis oriented parallel to the y-axis of the detector with $A$ along
128   the x-axis. For other $\theta$, $\phi$ values, the order of rotations
129   matters. In particular, the parallelepiped must first be rotated $\theta$
130   degrees in the $x-z$ plane before rotating $\phi$ degrees around the $z$
131   axis (in the $x-y$ plane). Applying orientational distribution to the
132   particle orientation (i.e  `jitter` to one or more of these angles) can get
133   more confusing as `jitter` is defined **NOT** with respect to the laboratory
134   frame but the particle reference frame. It is thus highly recmmended to
135   read :ref:`orientation` for further details of the calculation and angular
136   dispersions.
[44bd2be]137
[dbf1a60]138.. note:: For 2d, constraints must be applied during fitting to ensure that the
[fc7bcd5]139   order of sides chosen is not altered, and hence that the correct definition
140   of angles is preserved. For the default choice shown here, that means
141   ensuring that the inequality $A < B < C$ is not violated,  The calculation
142   will not report an error, but the results may be not correct.
[393facf]143
[15a90c1]144.. figure:: img/parallelepiped_angle_definition.png
[44bd2be]145
146    Definition of the angles for oriented core-shell parallelepipeds.
[fc7bcd5]147    Note that rotation $\theta$, initially in the $x-z$ plane, is carried
[2d81cfe]148    out first, then rotation $\phi$ about the $z$ axis, finally rotation
[fc7bcd5]149    $\Psi$ is now around the $C$ axis of the particle. The neutron or X-ray
150    beam is along the $z$ axis and the detecotr defines the $x-y$ plane.
[44bd2be]151
[1916c52]152.. figure:: img/parallelepiped_angle_projection.png
[44bd2be]153
154    Examples of the angles for oriented core-shell parallelepipeds against the
155    detector plane.
156
[5bc6d21]157
158Validation
159----------
160
161Cross-checked against hollow rectangular prism and rectangular prism for equal
162thickness overlapping sides, and by Monte Carlo sampling of points within the
163shape for non-uniform, non-overlapping sides.
164
165
[aa2edb2]166References
167----------
[44bd2be]168
[5810f00]169.. [#] P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
170    Equations (1), (13-14). (in German)
171.. [#] D Singh (2009). *Small angle scattering studies of self assembly in
[fc0b7aa]172   lipid mixtures*, Johns Hopkins University Thesis (2009) 223-225. `Available
[5810f00]173   from Proquest <http://search.proquest.com/docview/304915826?accountid
174   =26379>`_
175
176Authorship and Verification
177----------------------------
[44bd2be]178
[5810f00]179* **Author:** NIST IGOR/DANSE **Date:** pre 2010
[331870d]180* **Converted to sasmodels by:** Miguel Gonzalez **Date:** February 26, 2016
[97be877]181* **Last Modified by:** Paul Kienzle **Date:** October 17, 2017
[f89ec96]182* **Last Reviewed by:** Paul Butler **Date:** May 24, 2018 - documentation
183  updated
[44bd2be]184"""
185
186import numpy as np
[14207bb]187from numpy import pi, inf, sqrt, cos, sin
[44bd2be]188
189name = "core_shell_parallelepiped"
190title = "Rectangular solid with a core-shell structure."
191description = """
[8f04da4]192     P(q)=
[44bd2be]193"""
194category = "shape:parallelepiped"
195
196#             ["name", "units", default, [lower, upper], "type","description"],
[42356c8]197parameters = [["sld_core", "1e-6/Ang^2", 1, [-inf, inf], "sld",
[44bd2be]198               "Parallelepiped core scattering length density"],
[42356c8]199              ["sld_a", "1e-6/Ang^2", 2, [-inf, inf], "sld",
[44bd2be]200               "Parallelepiped A rim scattering length density"],
[42356c8]201              ["sld_b", "1e-6/Ang^2", 4, [-inf, inf], "sld",
[44bd2be]202               "Parallelepiped B rim scattering length density"],
[42356c8]203              ["sld_c", "1e-6/Ang^2", 2, [-inf, inf], "sld",
[44bd2be]204               "Parallelepiped C rim scattering length density"],
[42356c8]205              ["sld_solvent", "1e-6/Ang^2", 6, [-inf, inf], "sld",
[44bd2be]206               "Solvent scattering length density"],
[2222134]207              ["length_a", "Ang", 35, [0, inf], "volume",
[44bd2be]208               "Shorter side of the parallelepiped"],
[2222134]209              ["length_b", "Ang", 75, [0, inf], "volume",
[44bd2be]210               "Second side of the parallelepiped"],
[2222134]211              ["length_c", "Ang", 400, [0, inf], "volume",
[44bd2be]212               "Larger side of the parallelepiped"],
[2222134]213              ["thick_rim_a", "Ang", 10, [0, inf], "volume",
[44bd2be]214               "Thickness of A rim"],
[2222134]215              ["thick_rim_b", "Ang", 10, [0, inf], "volume",
[44bd2be]216               "Thickness of B rim"],
[2222134]217              ["thick_rim_c", "Ang", 10, [0, inf], "volume",
[44bd2be]218               "Thickness of C rim"],
[9b79f29]219              ["theta", "degrees", 0, [-360, 360], "orientation",
220               "c axis to beam angle"],
221              ["phi", "degrees", 0, [-360, 360], "orientation",
222               "rotation about beam"],
223              ["psi", "degrees", 0, [-360, 360], "orientation",
224               "rotation about c axis"],
[44bd2be]225             ]
226
[43b7eea]227source = ["lib/gauss76.c", "core_shell_parallelepiped.c"]
[44bd2be]228
229
[2222134]230def ER(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c):
[44bd2be]231    """
232        Return equivalent radius (ER)
233    """
[10ee838]234    from .parallelepiped import ER as ER_p
[44bd2be]235
[10ee838]236    a = length_a + 2*thick_rim_a
237    b = length_b + 2*thick_rim_b
238    c = length_c + 2*thick_rim_c
239    return ER_p(a, b, c)
[44bd2be]240
241# VR defaults to 1.0
242
[8f04da4]243def random():
244    outer = 10**np.random.uniform(1, 4.7, size=3)
245    thick = np.random.beta(0.5, 0.5, size=3)*(outer-2) + 1
246    length = outer - thick
247    pars = dict(
248        length_a=length[0],
249        length_b=length[1],
250        length_c=length[2],
251        thick_rim_a=thick[0],
252        thick_rim_b=thick[1],
253        thick_rim_c=thick[2],
254    )
255    return pars
256
[44bd2be]257# parameters for demo
258demo = dict(scale=1, background=0.0,
[14838a3]259            sld_core=1, sld_a=2, sld_b=4, sld_c=2, sld_solvent=6,
[2222134]260            length_a=35, length_b=75, length_c=400,
261            thick_rim_a=10, thick_rim_b=10, thick_rim_c=10,
[44bd2be]262            theta=0, phi=0, psi=0,
[2222134]263            length_a_pd=0.1, length_a_pd_n=1,
264            length_b_pd=0.1, length_b_pd_n=1,
265            length_c_pd=0.1, length_c_pd_n=1,
266            thick_rim_a_pd=0.1, thick_rim_a_pd_n=1,
267            thick_rim_b_pd=0.1, thick_rim_b_pd_n=1,
268            thick_rim_c_pd=0.1, thick_rim_c_pd_n=1,
[44bd2be]269            theta_pd=10, theta_pd_n=1,
270            phi_pd=10, phi_pd_n=1,
[14838a3]271            psi_pd=10, psi_pd_n=1)
[44bd2be]272
[4493288]273# rkh 7/4/17 add random unit test for 2d, note make all params different,
274# 2d values not tested against other codes or models
[fa70e04]275if 0:  # pak: model rewrite; need to update tests
276    qx, qy = 0.2 * cos(pi/6.), 0.2 * sin(pi/6.)
277    tests = [[{}, 0.2, 0.533149288477],
[2d81cfe]278             [{}, [0.2], [0.533149288477]],
279             [{'theta':10.0, 'phi':20.0}, (qx, qy), 0.0853299803222],
280             [{'theta':10.0, 'phi':20.0}, [(qx, qy)], [0.0853299803222]],
[fa70e04]281            ]
282    del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.