double form_volume(double radius, double thickness, double length); double Iq(double q, double core_sld, double shell_sld, double solvent_sld, double radius, double thickness, double length); double Iqxy(double qx, double qy, double core_sld, double shell_sld, double solvent_sld, double radius, double thickness, double length, double theta, double phi); // twovd = 2 * volume * delta_rho // besarg = q * R * sin(alpha) // siarg = q * L/2 * cos(alpha) double _cyl(double twovd, double besarg, double siarg); double _cyl(double twovd, double besarg, double siarg) { const double bj = (besarg == 0.0 ? 0.5 : J1(besarg)/besarg); const double si = (siarg == 0.0 ? 1.0 : sin(siarg)/siarg); return twovd*si*bj; } double form_volume(double radius, double thickness, double length) { return M_PI*(radius+thickness)*(radius+thickness)*(length+2*thickness); } double Iq(double q, double core_sld, double shell_sld, double solvent_sld, double radius, double thickness, double length) { // precalculate constants const double core_qr = q*radius; const double core_qh = q*0.5*length; const double core_twovd = 2.0 * form_volume(radius,0,length) * (core_sld-shell_sld); const double shell_qr = q*(radius + thickness); const double shell_qh = q*(0.5*length + thickness); const double shell_twovd = 2.0 * form_volume(radius,thickness,length) * (shell_sld-solvent_sld); double total = 0.0; // double lower=0, upper=M_PI_2; for (int i=0; i<76 ;i++) { // translate a point in [-1,1] to a point in [lower,upper] //const double alpha = ( Gauss76Z[i]*(upper-lower) + upper + lower )/2.0; double sn, cn; const double alpha = 0.5*(Gauss76Z[i]*M_PI_2 + M_PI_2); SINCOS(alpha, sn, cn); const double fq = _cyl(core_twovd, core_qr*sn, core_qh*cn) + _cyl(shell_twovd, shell_qr*sn, shell_qh*cn); total += Gauss76Wt[i] * fq * fq * sn; } // translate dx in [-1,1] to dx in [lower,upper] //const double form = (upper-lower)/2.0*total; return 1.0e-4 * total * M_PI_4; } double Iqxy(double qx, double qy, double core_sld, double shell_sld, double solvent_sld, double radius, double thickness, double length, double theta, double phi) { double sn, cn; // slots to hold sincos function output // Compute angle alpha between q and the cylinder axis SINCOS(theta*M_PI_180, sn, cn); // # The following correction factor exists in sasview, but it can't be // # right, so we are leaving it out for now. // const double correction = fabs(cn)*M_PI_2; const double q = sqrt(qx*qx+qy*qy); const double cos_val = cn*cos(phi*M_PI_180)*(qx/q) + sn*(qy/q); const double alpha = acos(cos_val); const double core_qr = q*radius; const double core_qh = q*0.5*length; const double core_twovd = 2.0 * form_volume(radius,0,length) * (core_sld-shell_sld); const double shell_qr = q*(radius + thickness); const double shell_qh = q*(0.5*length + thickness); const double shell_twovd = 2.0 * form_volume(radius,thickness,length) * (shell_sld-solvent_sld); SINCOS(alpha, sn, cn); const double fq = _cyl(core_twovd, core_qr*sn, core_qh*cn) + _cyl(shell_twovd, shell_qr*sn, shell_qh*cn); return 1.0e-4 * fq * fq; }