source: sasmodels/sasmodels/models/core_shell_bicelle.py @ ee60aa7

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since ee60aa7 was ee60aa7, checked in by Paul Kienzle <pkienzle@…>, 6 years ago

clean up effective radius functions; improve mono_gauss_coil accuracy; start moving VR into C

  • Property mode set to 100644
File size: 7.0 KB
Line 
1r"""
2Definition
3----------
4
5This model provides the form factor for a circular cylinder with a
6core-shell scattering length density profile. Thus this is a variation
7of a core-shell cylinder or disc where the shell on the walls and ends
8may be of different thicknesses and scattering length densities. The form
9factor is normalized by the particle volume.
10
11
12.. figure:: img/core_shell_bicelle_geometry.png
13
14    Schematic cross-section of bicelle. Note however that the model here
15    calculates for rectangular, not curved, rims as shown below.
16
17.. figure:: img/core_shell_bicelle_parameters.png
18
19   Cross section of cylindrical symmetry model used here. Users will have
20   to decide how to distribute "heads" and "tails" between the rim, face
21   and core regions in order to estimate appropriate starting parameters.
22
23Given the scattering length densities (sld) $\rho_c$, the core sld, $\rho_f$,
24the face sld, $\rho_r$, the rim sld and $\rho_s$ the solvent sld, the
25scattering length density variation along the cylinder axis is:
26
27.. math::
28
29    \rho(r) =
30      \begin{cases}
31      &\rho_c \text{ for } 0 \lt r \lt R; -L \lt z\lt L \\[1.5ex]
32      &\rho_f \text{ for } 0 \lt r \lt R; -(L+2t) \lt z\lt -L;
33      L \lt z\lt (L+2t) \\[1.5ex]
34      &\rho_r\text{ for } 0 \lt r \lt R; -(L+2t) \lt z\lt -L; L \lt z\lt (L+2t)
35      \end{cases}
36
37The form factor for the bicelle is calculated in cylindrical coordinates, where
38$\alpha$ is the angle between the $Q$ vector and the cylinder axis, to give:
39
40.. math::
41
42    I(Q,\alpha) = \frac{\text{scale}}{V_t} \cdot
43        F(Q,\alpha)^2 \cdot sin(\alpha) + \text{background}
44
45where
46
47.. math::
48    :nowrap:
49
50    \begin{align*}
51    F(Q,\alpha) = &\bigg[
52    (\rho_c - \rho_f) V_c
53     \frac{2J_1(QRsin \alpha)}{QRsin\alpha}
54     \frac{sin(QLcos\alpha/2)}{Q(L/2)cos\alpha} \\
55    &+(\rho_f - \rho_r) V_{c+f}
56     \frac{2J_1(QRsin\alpha)}{QRsin\alpha}
57     \frac{sin(Q(L/2+t_f)cos\alpha)}{Q(L/2+t_f)cos\alpha} \\
58    &+(\rho_r - \rho_s) V_t
59     \frac{2J_1(Q(R+t_r)sin\alpha)}{Q(R+t_r)sin\alpha}
60     \frac{sin(Q(L/2+t_f)cos\alpha)}{Q(L/2+t_f)cos\alpha}
61    \bigg]
62    \end{align*}
63
64where $V_t$ is the total volume of the bicelle, $V_c$ the volume of the core,
65$V_{c+f}$ the volume of the core plus the volume of the faces, $R$ is the radius
66of the core, $L$ the length of the core, $t_f$ the thickness of the face, $t_r$
67the thickness of the rim and $J_1$ the usual first order bessel function.
68
69The output of the 1D scattering intensity function for randomly oriented
70cylinders is then given by integrating over all possible $\theta$ and $\phi$.
71
72For oriented bicelles the *theta*, and *phi* orientation parameters will appear
73when fitting 2D data, see the :ref:`cylinder` model for further information.
74Our implementation of the scattering kernel and the 1D scattering intensity
75use the c-library from NIST.
76
77.. figure:: img/cylinder_angle_definition.png
78
79    Definition of the angles for the oriented core shell bicelle model,
80    note that the cylinder axis of the bicelle starts along the beam direction
81    when $\theta  = \phi = 0$.
82
83
84References
85----------
86
87.. [#] D Singh (2009). *Small angle scattering studies of self assembly in
88   lipid mixtures*, John's Hopkins University Thesis (2009) 223-225. `Available
89   from Proquest <http://search.proquest.com/docview/304915826?accountid
90   =26379>`_
91
92Authorship and Verification
93----------------------------
94
95* **Author:** NIST IGOR/DANSE **Date:** pre 2010
96* **Last Modified by:** Paul Butler **Date:** September 30, 2016
97* **Last Reviewed by:** Richard Heenan **Date:** January 4, 2017
98"""
99
100import numpy as np
101from numpy import inf, sin, cos, pi
102
103name = "core_shell_bicelle"
104title = "Circular cylinder with a core-shell scattering length density profile.."
105description = """
106    P(q,alpha)= (scale/Vs)*f(q)^(2) + bkg,  where:
107    f(q)= Vt(sld_rim - sld_solvent)* sin[qLt.cos(alpha)/2]
108    /[qLt.cos(alpha)/2]*J1(qRout.sin(alpha))
109    /[qRout.sin(alpha)]+
110    (sld_core-sld_face)*Vc*sin[qLcos(alpha)/2][[qL
111    *cos(alpha)/2]*J1(qRc.sin(alpha))
112    /qRc.sin(alpha)]+
113    (sld_face-sld_rim)*(Vc+Vf)*sin[q(L+2.thick_face).
114    cos(alpha)/2][[q(L+2.thick_face)*cos(alpha)/2]*
115    J1(qRc.sin(alpha))/qRc.sin(alpha)]
116
117    alpha:is the angle between the axis of
118    the cylinder and the q-vector
119    Vt = pi.(Rc + thick_rim)^2.Lt : total volume
120    Vc = pi.Rc^2.L :the volume of the core
121    Vf = 2.pi.Rc^2.thick_face
122    Rc = radius: is the core radius
123    L: the length of the core
124    Lt = L + 2.thick_face: total length
125    Rout = radius + thick_rim
126    sld_core, sld_rim, sld_face:scattering length
127    densities within the particle
128    sld_solvent: the scattering length density
129    of the solvent
130    bkg: the background
131    J1: the first order Bessel function
132    theta: axis_theta of the cylinder
133    phi: the axis_phi of the cylinder...
134        """
135category = "shape:cylinder"
136
137# pylint: disable=bad-whitespace, line-too-long
138#             ["name", "units", default, [lower, upper], "type", "description"],
139parameters = [
140    ["radius",         "Ang",       80, [0, inf],    "volume",      "Cylinder core radius"],
141    ["thick_rim",  "Ang",       10, [0, inf],    "volume",      "Rim shell thickness"],
142    ["thick_face", "Ang",       10, [0, inf],    "volume",      "Cylinder face thickness"],
143    ["length",         "Ang",      50, [0, inf],    "volume",      "Cylinder length"],
144    ["sld_core",       "1e-6/Ang^2", 1, [-inf, inf], "sld",         "Cylinder core scattering length density"],
145    ["sld_face",       "1e-6/Ang^2", 4, [-inf, inf], "sld",         "Cylinder face scattering length density"],
146    ["sld_rim",        "1e-6/Ang^2", 4, [-inf, inf], "sld",         "Cylinder rim scattering length density"],
147    ["sld_solvent",    "1e-6/Ang^2", 1, [-inf, inf], "sld",         "Solvent scattering length density"],
148    ["theta",          "degrees",   90, [-360, 360], "orientation", "cylinder axis to beam angle"],
149    ["phi",            "degrees",    0, [-360, 360], "orientation", "rotation about beam"]
150    ]
151
152# pylint: enable=bad-whitespace, line-too-long
153
154source = ["lib/sas_Si.c", "lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c",
155          "core_shell_bicelle.c"]
156have_Fq = True
157effective_radius_type = [
158    "equivalent sphere", "outer rim radius",
159    "half outer thickness", "half diagonal",
160    ]
161
162def random():
163    pars = dict(
164        radius=10**np.random.uniform(1.3, 3),
165        length=10**np.random.uniform(1.3, 4),
166        thick_rim=10**np.random.uniform(0, 1.7),
167        thick_face=10**np.random.uniform(0, 1.7),
168    )
169    return pars
170
171demo = dict(scale=1, background=0,
172            radius=20.0,
173            thick_rim=10.0,
174            thick_face=10.0,
175            length=400.0,
176            sld_core=1.0,
177            sld_face=4.0,
178            sld_rim=4.0,
179            sld_solvent=1.0,
180            theta=90,
181            phi=0)
182q = 0.1
183# april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct!
184qx = q*cos(pi/6.0)
185qy = q*sin(pi/6.0)
186tests = [
187    [{}, 0.05, 7.4883545957],
188    [{'theta':80., 'phi':10.}, (qx, qy), 2.81048892474]
189]
190del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.