source: sasmodels/sasmodels/models/core_shell_bicelle.py @ a151caa

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since a151caa was a151caa, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

tuned random model generator for be_polyelectrolyte, barbell, core multishell, core-shell bicelle

  • Property mode set to 100644
File size: 6.8 KB
Line 
1r"""
2Definition
3----------
4
5This model provides the form factor for a circular cylinder with a
6core-shell scattering length density profile. Thus this is a variation
7of a core-shell cylinder or disc where the shell on the walls and ends
8may be of different thicknesses and scattering length densities. The form
9factor is normalized by the particle volume.
10
11
12.. figure:: img/core_shell_bicelle_geometry.png
13
14    Schematic cross-section of bicelle. Note however that the model here
15    calculates for rectangular, not curved, rims as shown below.
16
17.. figure:: img/core_shell_bicelle_parameters.png
18
19   Cross section of cylindrical symmetry model used here. Users will have
20   to decide how to distribute "heads" and "tails" between the rim, face
21   and core regions in order to estimate appropriate starting parameters.
22
23Given the scattering length densities (sld) $\rho_c$, the core sld, $\rho_f$,
24the face sld, $\rho_r$, the rim sld and $\rho_s$ the solvent sld, the
25scattering length density variation along the cylinder axis is:
26
27.. math::
28
29    \rho(r) =
30      \begin{cases}
31      &\rho_c \text{ for } 0 \lt r \lt R; -L \lt z\lt L \\[1.5ex]
32      &\rho_f \text{ for } 0 \lt r \lt R; -(L+2t) \lt z\lt -L;
33      L \lt z\lt (L+2t) \\[1.5ex]
34      &\rho_r\text{ for } 0 \lt r \lt R; -(L+2t) \lt z\lt -L; L \lt z\lt (L+2t)
35      \end{cases}
36
37The form factor for the bicelle is calculated in cylindrical coordinates, where
38$\alpha$ is the angle between the $Q$ vector and the cylinder axis, to give:
39
40.. math::
41
42    I(Q,\alpha) = \frac{\text{scale}}{V_t} \cdot
43        F(Q,\alpha)^2.sin(\alpha) + \text{background}
44
45where
46
47.. math::
48
49    \begin{align}
50    F(Q,\alpha) = &\bigg[
51    (\rho_c - \rho_f) V_c \frac{2J_1(QRsin \alpha)}{QRsin\alpha}\frac{sin(QLcos\alpha/2)}{Q(L/2)cos\alpha} \\
52    &+(\rho_f - \rho_r) V_{c+f} \frac{2J_1(QRsin\alpha)}{QRsin\alpha}\frac{sin(Q(L/2+t_f)cos\alpha)}{Q(L/2+t_f)cos\alpha} \\
53    &+(\rho_r - \rho_s) V_t \frac{2J_1(Q(R+t_r)sin\alpha)}{Q(R+t_r)sin\alpha}\frac{sin(Q(L/2+t_f)cos\alpha)}{Q(L/2+t_f)cos\alpha}
54    \bigg]
55    \end{align}
56
57where $V_t$ is the total volume of the bicelle, $V_c$ the volume of the core,
58$V_{c+f}$ the volume of the core plus the volume of the faces, $R$ is the radius
59of the core, $L$ the length of the core, $t_f$ the thickness of the face, $t_r$
60the thickness of the rim and $J_1$ the usual first order bessel function.
61
62The output of the 1D scattering intensity function for randomly oriented
63cylinders is then given by integrating over all possible $\theta$ and $\phi$.
64
65For oriented bicelles the *theta*, and *phi* orientation parameters will appear when fitting 2D data,
66see the :ref:`cylinder` model for further information.
67Our implementation of the scattering kernel and the 1D scattering intensity
68use the c-library from NIST.
69
70.. figure:: img/cylinder_angle_definition.png
71
72    Definition of the angles for the oriented core shell bicelle model,
73    note that the cylinder axis of the bicelle starts along the beam direction
74    when $\theta  = \phi = 0$.
75
76
77References
78----------
79
80.. [#] D Singh (2009). *Small angle scattering studies of self assembly in
81   lipid mixtures*, John's Hopkins University Thesis (2009) 223-225. `Available
82   from Proquest <http://search.proquest.com/docview/304915826?accountid
83   =26379>`_
84
85Authorship and Verification
86----------------------------
87
88* **Author:** NIST IGOR/DANSE **Date:** pre 2010
89* **Last Modified by:** Paul Butler **Date:** September 30, 2016
90* **Last Reviewed by:** Richard Heenan **Date:** January 4, 2017
91"""
92
93from numpy import inf, sin, cos, pi
94
95name = "core_shell_bicelle"
96title = "Circular cylinder with a core-shell scattering length density profile.."
97description = """
98    P(q,alpha)= (scale/Vs)*f(q)^(2) + bkg,  where:
99    f(q)= Vt(sld_rim - sld_solvent)* sin[qLt.cos(alpha)/2]
100    /[qLt.cos(alpha)/2]*J1(qRout.sin(alpha))
101    /[qRout.sin(alpha)]+
102    (sld_core-sld_face)*Vc*sin[qLcos(alpha)/2][[qL
103    *cos(alpha)/2]*J1(qRc.sin(alpha))
104    /qRc.sin(alpha)]+
105    (sld_face-sld_rim)*(Vc+Vf)*sin[q(L+2.thick_face).
106    cos(alpha)/2][[q(L+2.thick_face)*cos(alpha)/2]*
107    J1(qRc.sin(alpha))/qRc.sin(alpha)]
108
109    alpha:is the angle between the axis of
110    the cylinder and the q-vector
111    Vt = pi.(Rc + thick_rim)^2.Lt : total volume
112    Vc = pi.Rc^2.L :the volume of the core
113    Vf = 2.pi.Rc^2.thick_face
114    Rc = radius: is the core radius
115    L: the length of the core
116    Lt = L + 2.thick_face: total length
117    Rout = radius + thick_rim
118    sld_core, sld_rim, sld_face:scattering length
119    densities within the particle
120    sld_solvent: the scattering length density
121    of the solvent
122    bkg: the background
123    J1: the first order Bessel function
124    theta: axis_theta of the cylinder
125    phi: the axis_phi of the cylinder...
126        """
127category = "shape:cylinder"
128
129# pylint: disable=bad-whitespace, line-too-long
130#             ["name", "units", default, [lower, upper], "type", "description"],
131parameters = [
132    ["radius",         "Ang",       80, [0, inf],    "volume",      "Cylinder core radius"],
133    ["thick_rim",  "Ang",       10, [0, inf],    "volume",      "Rim shell thickness"],
134    ["thick_face", "Ang",       10, [0, inf],    "volume",      "Cylinder face thickness"],
135    ["length",         "Ang",      50, [0, inf],    "volume",      "Cylinder length"],
136    ["sld_core",       "1e-6/Ang^2", 1, [-inf, inf], "sld",         "Cylinder core scattering length density"],
137    ["sld_face",       "1e-6/Ang^2", 4, [-inf, inf], "sld",         "Cylinder face scattering length density"],
138    ["sld_rim",        "1e-6/Ang^2", 4, [-inf, inf], "sld",         "Cylinder rim scattering length density"],
139    ["sld_solvent",    "1e-6/Ang^2", 1, [-inf, inf], "sld",         "Solvent scattering length density"],
140    ["theta",          "degrees",   90, [-360, 360], "orientation", "cylinder axis to beam angle"],
141    ["phi",            "degrees",    0, [-360, 360], "orientation", "rotation about beam"]
142    ]
143
144# pylint: enable=bad-whitespace, line-too-long
145
146source = ["lib/sas_Si.c", "lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c",
147          "core_shell_bicelle.c"]
148
149def random():
150    import numpy as np
151    pars = dict(
152        radius=10**np.random.uniform(1.3, 3),
153        length=10**np.random.uniform(1.3, 4),
154        thick_rim=10**np.random.uniform(0, 1.7),
155        thick_face=10**np.random.uniform(0, 1.7),
156    )
157    return pars
158
159demo = dict(scale=1, background=0,
160            radius=20.0,
161            thick_rim=10.0,
162            thick_face=10.0,
163            length=400.0,
164            sld_core=1.0,
165            sld_face=4.0,
166            sld_rim=4.0,
167            sld_solvent=1.0,
168            theta=90,
169            phi=0)
170q = 0.1
171# april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct!
172qx = q*cos(pi/6.0)
173qy = q*sin(pi/6.0)
174tests = [[{}, 0.05, 7.4883545957],
175        [{'theta':80., 'phi':10.}, (qx, qy), 2.81048892474 ]
176        ]
177del qx, qy  # not necessary to delete, but cleaner
178
Note: See TracBrowser for help on using the repository browser.