source: sasmodels/sasmodels/models/core_shell_bicelle.py @ 9b79f29

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 9b79f29 was 9b79f29, checked in by richardh, 7 years ago

more docs change for new rotation angles

  • Property mode set to 100644
File size: 6.5 KB
Line 
1r"""
2Definition
3----------
4
5This model provides the form factor for a circular cylinder with a
6core-shell scattering length density profile. Thus this is a variation
7of a core-shell cylinder or disc where the shell on the walls and ends
8may be of different thicknesses and scattering length densities. The form
9factor is normalized by the particle volume.
10
11
12.. figure:: img/core_shell_bicelle_geometry.png
13
14    Schematic cross-section of bicelle. Note however that the model here
15    calculates for rectangular, not curved, rims as shown below.
16
17.. figure:: img/core_shell_bicelle_parameters.png
18
19   Cross section of cylindrical symmetry model used here. Users will have
20   to decide how to distribute "heads" and "tails" between the rim, face
21   and core regions in order to estimate appropriate starting parameters.
22
23Given the scattering length densities (sld) $\rho_c$, the core sld, $\rho_f$,
24the face sld, $\rho_r$, the rim sld and $\rho_s$ the solvent sld, the
25scattering length density variation along the cylinder axis is:
26
27.. math::
28
29    \rho(r) =
30      \begin{cases}
31      &\rho_c \text{ for } 0 \lt r \lt R; -L \lt z\lt L \\[1.5ex]
32      &\rho_f \text{ for } 0 \lt r \lt R; -(L+2t) \lt z\lt -L;
33      L \lt z\lt (L+2t) \\[1.5ex]
34      &\rho_r\text{ for } 0 \lt r \lt R; -(L+2t) \lt z\lt -L; L \lt z\lt (L+2t)
35      \end{cases}
36
37The form factor for the bicelle is calculated in cylindrical coordinates, where
38$\alpha$ is the angle between the $Q$ vector and the cylinder axis, to give:
39
40.. math::
41
42    I(Q,\alpha) = \frac{\text{scale}}{V_t} \cdot
43        F(Q,\alpha)^2.sin(\alpha) + \text{background}
44
45where
46
47.. math::
48
49    \begin{align}   
50    F(Q,\alpha) = &\bigg[
51    (\rho_c - \rho_f) V_c \frac{2J_1(QRsin \alpha)}{QRsin\alpha}\frac{sin(QLcos\alpha/2)}{Q(L/2)cos\alpha} \\
52    &+(\rho_f - \rho_r) V_{c+f} \frac{2J_1(QRsin\alpha)}{QRsin\alpha}\frac{sin(Q(L/2+t_f)cos\alpha)}{Q(L/2+t_f)cos\alpha} \\
53    &+(\rho_r - \rho_s) V_t \frac{2J_1(Q(R+t_r)sin\alpha)}{Q(R+t_r)sin\alpha}\frac{sin(Q(L/2+t_f)cos\alpha)}{Q(L/2+t_f)cos\alpha}
54    \bigg]
55    \end{align}
56
57where $V_t$ is the total volume of the bicelle, $V_c$ the volume of the core,
58$V_{c+f}$ the volume of the core plus the volume of the faces, $R$ is the radius
59of the core, $L$ the length of the core, $t_f$ the thickness of the face, $t_r$
60the thickness of the rim and $J_1$ the usual first order bessel function.
61
62The output of the 1D scattering intensity function for randomly oriented
63cylinders is then given by integrating over all possible $\theta$ and $\phi$.
64
65The *theta* and *phi* parameters are not used for the 1D output.
66Our implementation of the scattering kernel and the 1D scattering intensity
67use the c-library from NIST.
68
69.. figure:: img/cylinder_angle_definition.jpg
70
71    Definition of the angles for the oriented core shell bicelle model,
72    note that the cylinder axis of the bicelle starts along the beam direction
73    when $\theta  = \phi = 0$.
74
75
76References
77----------
78
79.. [#] D Singh (2009). *Small angle scattering studies of self assembly in
80   lipid mixtures*, John's Hopkins University Thesis (2009) 223-225. `Available
81   from Proquest <http://search.proquest.com/docview/304915826?accountid
82   =26379>`_
83
84Authorship and Verification
85----------------------------
86
87* **Author:** NIST IGOR/DANSE **Date:** pre 2010
88* **Last Modified by:** Paul Butler **Date:** September 30, 2016
89* **Last Reviewed by:** Richard Heenan **Date:** January 4, 2017
90"""
91
92from numpy import inf, sin, cos, pi
93
94name = "core_shell_bicelle"
95title = "Circular cylinder with a core-shell scattering length density profile.."
96description = """
97    P(q,alpha)= (scale/Vs)*f(q)^(2) + bkg,  where:
98    f(q)= Vt(sld_rim - sld_solvent)* sin[qLt.cos(alpha)/2]
99    /[qLt.cos(alpha)/2]*J1(qRout.sin(alpha))
100    /[qRout.sin(alpha)]+
101    (sld_core-sld_face)*Vc*sin[qLcos(alpha)/2][[qL
102    *cos(alpha)/2]*J1(qRc.sin(alpha))
103    /qRc.sin(alpha)]+
104    (sld_face-sld_rim)*(Vc+Vf)*sin[q(L+2.thick_face).
105    cos(alpha)/2][[q(L+2.thick_face)*cos(alpha)/2]*
106    J1(qRc.sin(alpha))/qRc.sin(alpha)]
107
108    alpha:is the angle between the axis of
109    the cylinder and the q-vector
110    Vt = pi.(Rc + thick_rim)^2.Lt : total volume
111    Vc = pi.Rc^2.L :the volume of the core
112    Vf = 2.pi.Rc^2.thick_face
113    Rc = radius: is the core radius
114    L: the length of the core
115    Lt = L + 2.thick_face: total length
116    Rout = radius + thick_rim
117    sld_core, sld_rim, sld_face:scattering length
118    densities within the particle
119    sld_solvent: the scattering length density
120    of the solvent
121    bkg: the background
122    J1: the first order Bessel function
123    theta: axis_theta of the cylinder
124    phi: the axis_phi of the cylinder...
125        """
126category = "shape:cylinder"
127
128# pylint: disable=bad-whitespace, line-too-long
129#             ["name", "units", default, [lower, upper], "type", "description"],
130parameters = [
131    ["radius",         "Ang",       80, [0, inf],    "volume",      "Cylinder core radius"],
132    ["thick_rim",  "Ang",       10, [0, inf],    "volume",      "Rim shell thickness"],
133    ["thick_face", "Ang",       10, [0, inf],    "volume",      "Cylinder face thickness"],
134    ["length",         "Ang",      50, [0, inf],    "volume",      "Cylinder length"],
135    ["sld_core",       "1e-6/Ang^2", 1, [-inf, inf], "sld",         "Cylinder core scattering length density"],
136    ["sld_face",       "1e-6/Ang^2", 4, [-inf, inf], "sld",         "Cylinder face scattering length density"],
137    ["sld_rim",        "1e-6/Ang^2", 4, [-inf, inf], "sld",         "Cylinder rim scattering length density"],
138    ["sld_solvent",    "1e-6/Ang^2", 1, [-inf, inf], "sld",         "Solvent scattering length density"],
139    ["theta",          "degrees",   90, [-360, 360], "orientation", "cylinder axis to beam angle"],
140    ["phi",            "degrees",    0, [-360, 360], "orientation", "rotation about beam"]
141    ]
142
143# pylint: enable=bad-whitespace, line-too-long
144
145source = ["lib/sas_Si.c", "lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c",
146          "core_shell_bicelle.c"]
147
148demo = dict(scale=1, background=0,
149            radius=20.0,
150            thick_rim=10.0,
151            thick_face=10.0,
152            length=400.0,
153            sld_core=1.0,
154            sld_face=4.0,
155            sld_rim=4.0,
156            sld_solvent=1.0,
157            theta=90,
158            phi=0)
159q = 0.1
160# april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct!
161qx = q*cos(pi/6.0)
162qy = q*sin(pi/6.0)
163tests = [[{}, 0.05, 7.4883545957],
164        [{'theta':80., 'phi':10.}, (qx, qy), 2.81048892474 ]
165        ]
166del qx, qy  # not necessary to delete, but cleaner
167
Note: See TracBrowser for help on using the repository browser.