double form_volume(double radius, double cap_radius, double length); double Iq(double q, double sld, double solvent_sld, double radius, double cap_radius, double length); double Iqxy(double qx, double qy, double sld, double solvent_sld, double radius, double cap_radius, double length, double theta, double phi); // Integral over a convex lens kernel for t in [h/R,1]. See the docs for // the definition of the function being integrated. // q is the magnitude of the q vector. // h is the length of the lens "inside" the cylinder. This negative wrt the // definition of h in the docs. // cap_radius is the radius of the lens // length is the cylinder length, or the separation between the lens halves // alpha is the angle of the cylinder wrt q. static double _cap_kernel(double q, double h, double cap_radius, double half_length, double sin_alpha, double cos_alpha) { // translate a point in [-1,1] to a point in [lower,upper] const double upper = 1.0; const double lower = h/cap_radius; // integral lower bound const double zm = 0.5*(upper-lower); const double zb = 0.5*(upper+lower); // cos term in integral is: // cos (q (R t - h + L/2) cos(alpha)) // so turn it into: // cos (m t + b) // where: // m = q R cos(alpha) // b = q(L/2-h) cos(alpha) const double m = q*cap_radius*cos_alpha; // cos argument slope const double b = q*(half_length-h)*cos_alpha; // cos argument intercept const double qrst = q*cap_radius*sin_alpha; // Q*R*sin(theta) double total = 0.0; for (int i=0; i<76 ;i++) { const double t = Gauss76Z[i]*zm + zb; const double radical = 1.0 - t*t; const double bj = sas_J1c(qrst*sqrt(radical)); const double Fq = cos(m*t + b) * radical * bj; total += Gauss76Wt[i] * Fq; } // translate dx in [-1,1] to dx in [lower,upper] const double integral = total*zm; const double cap_Fq = 2*M_PI*cube(cap_radius)*integral; return cap_Fq; } double form_volume(double radius, double cap_radius, double length) { // cap radius should never be less than radius when this is called // Note: volume V = 2*V_cap + V_cyl // // V_cyl = pi r_cyl^2 L // V_cap = 1/6 pi h_c (3 r_cyl^2 + h_c^2) = 1/3 pi h_c^2 (3 r_cap - h_c) // // The docs for capped cylinder give the volume as: // V = pi r^2 L + 2/3 pi (R-h)^2 (2R + h) // where r_cap=R and h = R - h_c. // // The first part is clearly V_cyl. The second part requires some work: // (R-h)^2 => h_c^2 // (2R+h) => 2R+ h_c-h_c + h => 2R + (R-h)-h_c + h => 3R-h_c // And so: // 2/3 pi (R-h)^2 (2R + h) => 2/3 pi h_c^2 (3 r_cap - h_c) // which is 2 V_cap, using the second form above. // // In this function we are going to use the first form of V_cap // // V = V_cyl + 2 V_cap // = pi r^2 L + pi hc (r^2 + hc^2/3) // = pi (r^2 (L+hc) + hc^3/3) const double hc = cap_radius - sqrt(cap_radius*cap_radius - radius*radius); return M_PI*(radius*radius*(length+hc) + hc*hc*hc/3.0); } double Iq(double q, double sld, double solvent_sld, double radius, double cap_radius, double length) { // Exclude invalid inputs. if (cap_radius < radius) return NAN; const double h = sqrt(cap_radius*cap_radius - radius*radius); const double half_length = 0.5*length; // translate a point in [-1,1] to a point in [0, pi/2] const double zm = M_PI_4; const double zb = M_PI_4; double total = 0.0; for (int i=0; i<76 ;i++) { const double alpha= Gauss76Z[i]*zm + zb; double sin_alpha, cos_alpha; // slots to hold sincos function output SINCOS(alpha, sin_alpha, cos_alpha); const double cap_Fq = _cap_kernel(q, h, cap_radius, half_length, sin_alpha, cos_alpha); const double bj = sas_J1c(q*radius*sin_alpha); const double si = sinc(q*half_length*cos_alpha); const double cyl_Fq = M_PI*radius*radius*length*bj*si; const double Aq = cap_Fq + cyl_Fq; total += Gauss76Wt[i] * Aq * Aq * sin_alpha; // sin_alpha for spherical coord integration } // translate dx in [-1,1] to dx in [lower,upper] const double form = total * zm; // Contrast const double s = (sld - solvent_sld); return 1.0e-4 * s * s * form; } double Iqxy(double qx, double qy, double sld, double solvent_sld, double radius, double cap_radius, double length, double theta, double phi) { // Compute angle alpha between q and the cylinder axis double sn, cn; SINCOS(theta*M_PI_180, sn, cn); const double q = sqrt(qx*qx+qy*qy); const double cos_val = cn*cos(phi*M_PI_180)*(qx/q) + sn*(qy/q); const double alpha = acos(cos_val); // rod angle relative to q // Exclude invalid inputs. if (cap_radius < radius) return NAN; const double h = sqrt(cap_radius*cap_radius - radius*radius); const double half_length = 0.5*length; double sin_alpha, cos_alpha; // slots to hold sincos function output SINCOS(alpha, sin_alpha, cos_alpha); const double cap_Fq = _cap_kernel(q, h, cap_radius, half_length, sin_alpha, cos_alpha); const double bj = sas_J1c(q*radius*sin_alpha); const double si = sinc(q*half_length*cos_alpha); const double cyl_Fq = M_PI*radius*radius*length*bj*si; const double Aq = cap_Fq + cyl_Fq; // Multiply by contrast^2 and convert to cm-1 const double s = (sld - solvent_sld); return 1.0e-4 * square(s * Aq); }