source: sasmodels/sasmodels/models/binary_hard_sphere.py @ ec45c4f

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since ec45c4f was ec45c4f, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

remove oldname/oldpars from new models

  • Property mode set to 100644
File size: 4.4 KB
Line 
1r"""
2
3Definition
4----------
5The binary hard sphere model provides the scattering intensity, for binary
6mixture of hard spheres including hard sphere interaction between those
7particles, using rhw Percus-Yevick closure. The calculation is an exact
8multi-component solution that properly accounts for the 3 partial structure
9factors as follows:
10
11.. math::
12
13    \begin{eqnarray}
14    I(q) = (1-x)f_1^2(q) S_{11}(q) + 2[x(1-x)]^{1/2} f_1(q)f_2(q)S_{12}(q) +
15    x\,f_2^2(q)S_{22}(q)
16    \end{eqnarray}
17
18where $S_{ij}$ are the partial structure factors and $f_i$ are the scattering
19amplitudes of the particles. The subscript 1 is for the smaller particle and 2
20is for the larger. The number fraction of the larger particle,
21($x = n2/(n1+n2)$, where $n$ = the number density) is internally calculated
22based on the diameter ratio and the volume fractions.
23
24.. math::
25
26    \begin{eqnarray}
27    x &=& \frac{(\phi_2 / \phi)\alpha^3}{(1-(\phi_2/\phi) + (\phi_2/\phi)
28    \alpha^3)} \\
29    \phi &=& \phi_1 + \phi_2 = \text{total volume fraction} \\
30    \alpha &=& R_1/R_2 = \text{size ratio}
31    \end{eqnarray}
32
33The 2D scattering intensity is the same as 1D, regardless of the orientation of
34the *q* vector which is defined as
35
36.. math::
37
38    q = \sqrt{q_x^2 + q_y^2}
39
40
41**NOTE 1:** The volume fractions and the scattering contrasts are loosely
42correlated, so holding as many parameters fixed to known values during fitting
43will improve the robustness of the fit.
44
45**NOTE 2:** Since the calculation uses the Percus-Yevick closure, all of the
46limitations of that closure relation apply here. Specifically, one should be
47wary of results for (total) volume fractions greater than approximately 40%.
48Depending on the size ratios or number fractions, the limit on total volume
49fraction may be lower.
50
51**NOTE 3:** The heavy arithmatic operations also mean that at present the
52function is poorly behaved at very low qr.  In some cases very large qr may
53also be poorly behaved.  These should however be outside any useful region of
54qr.
55
56The code for this model is based originally on a c-library implementation by the
57NIST Center for Neutron Research (Kline, 2006).
58
59See the references for details.
60
61References
62----------
63
64N W Ashcroft and D C Langreth, *Physical Review*, 156 (1967) 685-692
65[Errata found in *Phys. Rev.* 166 (1968) 934]
66
67S R Kline, *J Appl. Cryst.*, 39 (2006) 895
68
69**Author:** NIST IGOR/DANSE **on:** pre 2010
70
71**Last Modified by:** Paul Butler **on:** March 20, 2016
72
73**Last Reviewed by:** Paul Butler **on:** March 20, 2016
74"""
75
76from numpy import inf
77
78category = "shape:sphere"
79single = False  # double precision only!
80
81name = "binary_hard_sphere"
82title = "binary mixture of hard spheres with hard sphere interactions."
83description = """Describes the scattering from a mixture of two distinct
84monodisperse, hard sphere particles.
85        [Parameters];
86        radius_lg: large radius of binary hard sphere,
87        radius_sm: small radius of binary hard sphere,
88        volfraction_lg: volume fraction of large spheres,
89        volfraction_sm: volume fraction of small spheres,
90        sld_lg: large sphere  scattering length density,
91        sld_sm: small sphere scattering length density,
92        sld_solvent: solvent scattering length density.
93"""
94#             ["name", "units", default, [lower, upper], "type", "description"],
95parameters = [["radius_lg", "Ang", 100, [0, inf], "",
96               "radius of large particle"],
97              ["radius_sm", "Ang", 25, [0, inf], "",
98               "radius of small particle"],
99              ["volfraction_lg", "", 0.1, [0, 1], "",
100               "volume fraction of large particle"],
101              ["volfraction_sm", "", 0.2, [0, 1], "",
102               "volume fraction of small particle"],
103              ["sld_lg", "1e-6/Ang^2", 3.5, [-inf, inf], "",
104               "scattering length density of large particle"],
105              ["sld_sm", "1e-6/Ang^2", 0.5, [-inf, inf], "",
106               "scattering length density of small particle"],
107              ["sld_solvent", "1e-6/Ang^2", 6.36, [-inf, inf], "",
108               "Solvent scattering length density"],
109             ]
110
111source = ["lib/sph_j1c.c", "binary_hard_sphere.c"]
112
113# parameters for demo and documentation
114demo = dict(sld_lg=3.5, sld_sm=0.5, sld_solvent=6.36,
115            radius_lg=100, radius_sm=20,
116            volfraction_lg=0.1, volfraction_sm=0.2)
117
118# NOTE: test results taken from values returned by SasView 3.1.2
119tests = [[{}, 0.001, 25.8927262013]]
120
Note: See TracBrowser for help on using the repository browser.