static double bcc_Zq(double qa, double qb, double qc, double dnn, double d_factor) { #if 0 // Equations as written in Matsuoka const double a1 = (+qa + qb + qc)/2.0; const double a2 = (-qa - qb + qc)/2.0; const double a3 = (-qa + qb - qc)/2.0; #else const double a1 = (+qa + qb - qc)/2.0; const double a2 = (+qa - qb + qc)/2.0; const double a3 = (-qa + qb + qc)/2.0; #endif #if 1 // Numerator: (1 - exp(a)^2)^3 // => (-(exp(2a) - 1))^3 // => -expm1(2a)^3 // Denominator: prod(1 - 2 cos(d ak) exp(a) + exp(2a)) // => prod(exp(a)^2 - 2 cos(d ak) exp(a) + 1) // => prod((exp(a) - 2 cos(d ak)) * exp(a) + 1) const double arg = -0.5*square(dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3); const double exp_arg = exp(arg); const double Zq = -cube(expm1(2.0*arg)) / ( ((exp_arg - 2.0*cos(dnn*a1))*exp_arg + 1.0) * ((exp_arg - 2.0*cos(dnn*a2))*exp_arg + 1.0) * ((exp_arg - 2.0*cos(dnn*a3))*exp_arg + 1.0)); #else // Alternate form, which perhaps is more approachable const double arg = -0.5*square(dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3); const double sinh_qd = sinh(arg); const double cosh_qd = cosh(arg); const double Zq = sinh_qd/(cosh_qd - cos(dnn*a1)) * sinh_qd/(cosh_qd - cos(dnn*a2)) * sinh_qd/(cosh_qd - cos(dnn*a3)); #endif return Zq; } // occupied volume fraction calculated from lattice symmetry and sphere radius static double bcc_volume_fraction(double radius, double dnn) { return 2.0*sphere_volume(sqrt(0.75)*radius/dnn); } static double form_volume(double radius) { return sphere_volume(radius); } static double Iq(double q, double dnn, double d_factor, double radius, double sld, double solvent_sld) { // translate a point in [-1,1] to a point in [0, 2 pi] const double phi_m = M_PI; const double phi_b = M_PI; // translate a point in [-1,1] to a point in [0, pi] const double theta_m = M_PI_2; const double theta_b = M_PI_2; double outer_sum = 0.0; for(int i=0; i<150; i++) { double inner_sum = 0.0; const double theta = Gauss150Z[i]*theta_m + theta_b; double sin_theta, cos_theta; SINCOS(theta, sin_theta, cos_theta); const double qc = q*cos_theta; const double qab = q*sin_theta; for(int j=0;j<150;j++) { const double phi = Gauss150Z[j]*phi_m + phi_b; double sin_phi, cos_phi; SINCOS(phi, sin_phi, cos_phi); const double qa = qab*cos_phi; const double qb = qab*sin_phi; const double form = bcc_Zq(qa, qb, qc, dnn, d_factor); inner_sum += Gauss150Wt[j] * form; } inner_sum *= phi_m; // sum(f(x)dx) = sum(f(x)) dx outer_sum += Gauss150Wt[i] * inner_sum * sin_theta; } outer_sum *= theta_m; const double Zq = outer_sum/(4.0*M_PI); const double Pq = sphere_form(q, radius, sld, solvent_sld); return bcc_volume_fraction(radius, dnn) * Pq * Zq; } static double Iqxy(double qa, double qb, double qc, double dnn, double d_factor, double radius, double sld, double solvent_sld) { const double q = sqrt(qa*qa + qb*qb + qc*qc); const double Zq = bcc_Zq(qa, qb, qc, dnn, d_factor); const double Pq = sphere_form(q, radius, sld, solvent_sld); return bcc_volume_fraction(radius, dnn) * Pq * Zq; }