static double _sq_bcc(double qa, double qb, double qc, double dnn, double d_factor) { // Rewriting equations for efficiency, accuracy and readability, and so // code is reusable between 1D and 2D models. const double a1 = +qa - qc + qb; const double a2 = +qa + qc - qb; const double a3 = -qa + qc + qb; const double half_dnn = 0.5*dnn; const double arg = 0.5*square(half_dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3); #if 1 // Numerator: (1 - exp(a)^2)^3 // => (-(exp(2a) - 1))^3 // => -expm1(2a)^3 // Denominator: prod(1 - 2 cos(xk) exp(a) + exp(a)^2) // => exp(a)^2 - 2 cos(xk) exp(a) + 1 // => (exp(a) - 2 cos(xk)) * exp(a) + 1 const double exp_arg = exp(-arg); const double Sq = -cube(expm1(-2.0*arg)) / ( ((exp_arg - 2.0*cos(half_dnn*a1))*exp_arg + 1.0) * ((exp_arg - 2.0*cos(half_dnn*a2))*exp_arg + 1.0) * ((exp_arg - 2.0*cos(half_dnn*a3))*exp_arg + 1.0)); #else // Alternate form, which perhaps is more approachable const double sinh_qd = sinh(arg); const double cosh_qd = cosh(arg); const double Sq = sinh_qd/(cosh_qd - cos(half_dnn*a1)) * sinh_qd/(cosh_qd - cos(half_dnn*a2)) * sinh_qd/(cosh_qd - cos(half_dnn*a3)); #endif return Sq; } // occupied volume fraction calculated from lattice symmetry and sphere radius static double _bcc_volume_fraction(double radius, double dnn) { return 2.0*sphere_volume(sqrt(0.75)*radius/dnn); } static double form_volume(double radius) { return sphere_volume(radius); } static double Iq(double q, double dnn, double d_factor, double radius, double sld, double solvent_sld) { // translate a point in [-1,1] to a point in [0, 2 pi] const double phi_m = M_PI; const double phi_b = M_PI; // translate a point in [-1,1] to a point in [0, pi] const double theta_m = M_PI_2; const double theta_b = M_PI_2; double outer_sum = 0.0; for(int i=0; i<150; i++) { double inner_sum = 0.0; const double theta = Gauss150Z[i]*theta_m + theta_b; double sin_theta, cos_theta; SINCOS(theta, sin_theta, cos_theta); const double qc = q*cos_theta; const double qab = q*sin_theta; for(int j=0;j<150;j++) { const double phi = Gauss150Z[j]*phi_m + phi_b; double sin_phi, cos_phi; SINCOS(phi, sin_phi, cos_phi); const double qa = qab*cos_phi; const double qb = qab*sin_phi; const double fq = _sq_bcc(qa, qb, qc, dnn, d_factor); inner_sum += Gauss150Wt[j] * fq; } inner_sum *= phi_m; // sum(f(x)dx) = sum(f(x)) dx outer_sum += Gauss150Wt[i] * inner_sum * sin_theta; } outer_sum *= theta_m; const double Sq = outer_sum/(4.0*M_PI); const double Pq = sphere_form(q, radius, sld, solvent_sld); return _bcc_volume_fraction(radius, dnn) * Pq * Sq; } static double Iqxy(double qx, double qy, double dnn, double d_factor, double radius, double sld, double solvent_sld, double theta, double phi, double psi) { double q, zhat, yhat, xhat; ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); const double qa = q*xhat; const double qb = q*yhat; const double qc = q*zhat; q = sqrt(qa*qa + qb*qb + qc*qc); const double Pq = sphere_form(q, radius, sld, solvent_sld); const double Sq = _sq_bcc(qa, qb, qc, dnn, d_factor); return _bcc_volume_fraction(radius, dnn) * Pq * Sq; }