source: sasmodels/sasmodels/models/barbell.py @ 31df0c9

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 31df0c9 was 31df0c9, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

tuned random model generation for more models

  • Property mode set to 100644
File size: 5.7 KB
Line 
1r"""
2Definition
3----------
4
5Calculates the scattering from a barbell-shaped cylinder.  Like
6:ref:`capped-cylinder`, this is a sphereocylinder with spherical end
7caps that have a radius larger than that of the cylinder, but with the center
8of the end cap radius lying outside of the cylinder. See the diagram for
9the details of the geometry and restrictions on parameter values.
10
11.. figure:: img/barbell_geometry.jpg
12
13    Barbell geometry, where $r$ is *radius*, $R$ is *radius_bell* and
14    $L$ is *length*. Since the end cap radius $R \geq r$ and by definition
15    for this geometry $h < 0$, $h$ is then defined by $r$ and $R$ as
16    $h = - \sqrt{R^2 - r^2}$
17
18The scattered intensity $I(q)$ is calculated as
19
20.. math::
21
22    I(q) = \frac{\Delta \rho^2}{V} \left<A^2(q,\alpha).sin(\alpha)\right>
23
24where the amplitude $A(q,\alpha)$ with the rod axis at angle $\alpha$ to $q$ is given as
25
26.. math::
27
28    A(q) =&\ \pi r^2L
29        \frac{\sin\left(\tfrac12 qL\cos\alpha\right)}
30             {\tfrac12 qL\cos\alpha}
31        \frac{2 J_1(qr\sin\alpha)}{qr\sin\alpha} \\
32        &\ + 4 \pi R^3 \int_{-h/R}^1 dt
33        \cos\left[ q\cos\alpha
34            \left(Rt + h + {\tfrac12} L\right)\right]
35        \times (1-t^2)
36        \frac{J_1\left[qR\sin\alpha \left(1-t^2\right)^{1/2}\right]}
37             {qR\sin\alpha \left(1-t^2\right)^{1/2}}
38
39The $\left<\ldots\right>$ brackets denote an average of the structure over
40all orientations. $\left<A^2(q,\alpha)\right>$ is then the form factor, $P(q)$.
41The scale factor is equivalent to the volume fraction of cylinders, each of
42volume, $V$. Contrast $\Delta\rho$ is the difference of scattering length
43densities of the cylinder and the surrounding solvent.
44
45The volume of the barbell is
46
47.. math::
48
49    V = \pi r_c^2 L + 2\pi\left(\tfrac23R^3 + R^2h-\tfrac13h^3\right)
50
51
52and its radius of gyration is
53
54.. math::
55
56    R_g^2 =&\ \left[ \tfrac{12}{5}R^5
57        + R^4\left(6h+\tfrac32 L\right)
58        + R^2\left(4h^2 + L^2 + 4Lh\right)
59        + R^2\left(3Lh^2 + \tfrac32 L^2h\right) \right. \\
60        &\ \left. + \tfrac25 h^5 - \tfrac12 Lh^4 - \tfrac12 L^2h^3
61        + \tfrac14 L^3r^2 + \tfrac32 Lr^4 \right]
62        \left( 4R^3 6R^2h - 2h^3 + 3r^2L \right)^{-1}
63
64.. note::
65    The requirement that $R \geq r$ is not enforced in the model! It is
66    up to you to restrict this during analysis.
67
68The 2D scattering intensity is calculated similar to the 2D cylinder model.
69
70.. figure:: img/cylinder_angle_definition.png
71
72    Definition of the angles for oriented 2D barbells.
73
74
75References
76----------
77
78.. [#] H Kaya, *J. Appl. Cryst.*, 37 (2004) 37 223-230
79.. [#] H Kaya and N R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda
80   and errata)
81
82Authorship and Verification
83----------------------------
84
85* **Author:** NIST IGOR/DANSE **Date:** pre 2010
86* **Last Modified by:** Paul Butler **Date:** March 20, 2016
87* **Last Reviewed by:** Richard Heenan **Date:** January 4, 2017
88"""
89from numpy import inf, sin, cos, pi
90
91name = "barbell"
92title = "Cylinder with spherical end caps"
93description = """
94    Calculates the scattering from a barbell-shaped cylinder.
95    That is a sphereocylinder with spherical end caps that have a radius larger
96    than that of the cylinder and the center of the end cap radius lies outside
97    of the cylinder.
98    Note: As the length of cylinder(bar) -->0,it becomes a dumbbell. And when
99    rad_bar = rad_bell, it is a spherocylinder.
100    It must be that rad_bar <(=) rad_bell.
101"""
102category = "shape:cylinder"
103# pylint: disable=bad-whitespace, line-too-long
104#             ["name", "units", default, [lower, upper], "type","description"],
105parameters = [["sld",         "1e-6/Ang^2",   4, [-inf, inf], "sld",         "Barbell scattering length density"],
106              ["sld_solvent", "1e-6/Ang^2",   1, [-inf, inf], "sld",         "Solvent scattering length density"],
107              ["radius_bell", "Ang",         40, [0, inf],    "volume",      "Spherical bell radius"],
108              ["radius",      "Ang",         20, [0, inf],    "volume",      "Cylindrical bar radius"],
109              ["length",      "Ang",        400, [0, inf],    "volume",      "Cylinder bar length"],
110              ["theta",       "degrees",     60, [-360, 360], "orientation", "Barbell axis to beam angle"],
111              ["phi",         "degrees",     60, [-360, 360], "orientation", "Rotation about beam"],
112             ]
113# pylint: enable=bad-whitespace, line-too-long
114
115source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "barbell.c"]
116
117def random():
118    import numpy as np
119    # TODO: increase volume range once problem with bell radius is fixed
120    # The issue is that bell radii of more than about 200 fail at high q
121    V = 10**np.random.uniform(7, 9)
122    bar_volume = 10**np.random.uniform(-4, -1)*V
123    bell_volume = V - bar_volume
124    bell_radius = (bell_volume/6)**0.3333  # approximate
125    min_bar = bar_volume/np.pi/bell_radius**2
126    bar_length = 10**np.random.uniform(0, 3)*min_bar
127    bar_radius = np.sqrt(bar_volume/bar_length/np.pi)
128    if bar_radius > bell_radius:
129        bell_radius, bar_radius = bar_radius, bell_radius
130    pars = dict(
131        #background=0,
132        radius_bell=bell_radius,
133        radius=bar_radius,
134        length=bar_length,
135    )
136    return pars
137
138# parameters for demo
139demo = dict(scale=1, background=0,
140            sld=6, sld_solvent=1,
141            radius_bell=40, radius=20, length=400,
142            theta=60, phi=60,
143            radius_pd=.2, radius_pd_n=5,
144            length_pd=.2, length_pd_n=5,
145            theta_pd=15, theta_pd_n=0,
146            phi_pd=15, phi_pd_n=0,
147           )
148q = 0.1
149# april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct!
150qx = q*cos(pi/6.0)
151qy = q*sin(pi/6.0)
152tests = [[{}, 0.075, 25.5691260532],
153        [{'theta':80., 'phi':10.}, (qx, qy), 3.04233067789],
154        ]
155del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.