source: sasmodels/sasmodels/models/_spherepy.py @ 304c775

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 304c775 was 304c775, checked in by Paul Kienzle <pkienzle@…>, 5 years ago

provide method for testing Fq results. Refs #1202.

  • Property mode set to 100644
File size: 3.7 KB
RevLine 
[be802cb]1r"""
[2d81cfe]2For information about polarised and magnetic scattering, see
[ca4444f]3the :ref:`magnetism` documentation.
[be802cb]4
5Definition
6----------
7
8The 1D scattering intensity is calculated in the following way (Guinier, 1955)
9
10.. math::
11
[eb69cce]12    I(q) = \frac{\text{scale}}{V} \cdot \left[
13        3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3}
[be802cb]14        \right]^2 + \text{background}
15
16where *scale* is a volume fraction, $V$ is the volume of the scatterer,
[eb69cce]17$r$ is the radius of the sphere, *background* is the background level and
[49da079]18*sld* and *sld_solvent* are the scattering length densities (SLDs) of the
[be802cb]19scatterer and the solvent respectively.
20
21Note that if your data is in absolute scale, the *scale* should represent
22the volume fraction (which is unitless) if you have a good fit. If not,
23it should represent the volume fraction times a factor (by which your data
24might need to be rescaled).
25
26The 2D scattering intensity is the same as above, regardless of the
27orientation of $\vec q$.
28
29Validation
30----------
31
32Validation of our code was done by comparing the output of the 1D model
33to the output of the software provided by the NIST (Kline, 2006).
34
35
[eb69cce]36References
37----------
[be802cb]38
39A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*,
40John Wiley and Sons, New York, (1955)
41
[ef07e95]42* **Last Reviewed by:** S King and P Parker **Date:** 2013/09/09 and 2014/01/06
[be802cb]43"""
44
[10576d1]45import numpy as np
[3c56da87]46from numpy import pi, inf, sin, cos, sqrt, log
[be802cb]47
[49da079]48name = " _sphere (python)"
49title = "PAK testing ideas for Spheres with uniform scattering length density"
[be802cb]50description = """\
[49da079]51P(q)=(scale/V)*[3V(sld-sld_solvent)*(sin(qr)-qr cos(qr))
[eb69cce]52                /(qr)^3]^2 + background
53    r: radius of sphere
[be802cb]54    V: The volume of the scatter
55    sld: the SLD of the sphere
[49da079]56    sld_solvent: the SLD of the solvent
[be802cb]57"""
[a5d0d00]58category = "shape:sphere"
[be802cb]59
[3e428ec]60#             ["name", "units", default, [lower, upper], "type","description"],
61parameters = [["sld", "1e-6/Ang^2", 1, [-inf, inf], "",
62               "Layer scattering length density"],
[49da079]63              ["sld_solvent", "1e-6/Ang^2", 6, [-inf, inf], "",
[3e428ec]64               "Solvent scattering length density"],
65              ["radius", "Ang", 50, [0, inf], "volume",
66               "Sphere radius"],
67             ]
[be802cb]68
69
70def form_volume(radius):
[3e428ec]71    return 1.333333333333333 * pi * radius ** 3
[be802cb]72
[304c775]73def effective_radius(mode, radius):
74    return radius
75
[49da079]76def Iq(q, sld, sld_solvent, radius):
[b3f6bc3]77    #print "q",q
[49da079]78    #print "sld,r",sld,sld_solvent,radius
[3e428ec]79    qr = q * radius
[be802cb]80    sn, cn = sin(qr), cos(qr)
[ade352a]81    ## The natural expression for the bessel function is the following:
82    ##     bes = 3 * (sn-qr*cn)/qr**3 if qr>0 else 1
83    ## however, to support vector q values we need to handle the conditional
84    ## as a vector, which we do by first evaluating the full expression
85    ## everywhere, then fixing it up where it is broken.   We should probably
86    ## set numpy to ignore the 0/0 error before we do though...
[3e428ec]87    bes = 3 * (sn - qr * cn) / qr ** 3 # may be 0/0 but we fix that next line
88    bes[qr == 0] = 1
[49da079]89    fq = bes * (sld - sld_solvent) * form_volume(radius)
[3e428ec]90    return 1.0e-4 * fq ** 2
[eb69cce]91Iq.vectorized = True  # Iq accepts an array of q values
[be802cb]92
[49da079]93def sesans(z, sld, sld_solvent, radius):
[10576d1]94    """
95    Calculate SESANS-correlation function for a solid sphere.
96
97    Wim Bouwman after formulae Timofei Kruglov J.Appl.Cryst. 2003 article
98    """
[3e428ec]99    d = z / radius
[10576d1]100    g = np.zeros_like(z)
[3e428ec]101    g[d == 0] = 1.
[10576d1]102    low = ((d > 0) & (d < 2))
103    dlow = d[low]
[3e428ec]104    dlow2 = dlow ** 2
[2d81cfe]105    g[low] = (sqrt(1 - dlow2/4.) * (1 + dlow2/8.)
106              + dlow2/2.*(1 - dlow2/16.) * log(dlow / (2. + sqrt(4. - dlow2))))
[10576d1]107    return g
[d2950f4]108sesans.vectorized = True  # sesans accepts an array of z values
[10576d1]109
[3e428ec]110demo = dict(scale=1, background=0,
[49da079]111            sld=6, sld_solvent=1,
[3e428ec]112            radius=120,
113            radius_pd=.2, radius_pd_n=45)
Note: See TracBrowser for help on using the repository browser.