source: sasmodels/sasmodels/modelinfo.py @ a85a569

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since a85a569 was a85a569, checked in by lewis, 7 years ago

Merge branch 'master' into ticket-767

  • Property mode set to 100644
File size: 42.3 KB
Line 
1"""
2Model Info and Parameter Tables
3===============================
4
5Defines :class:`ModelInfo` and :class:`ParameterTable` and the routines for
6manipulating them.  In particular, :func:`make_model_info` converts a kernel
7module into the model info block as seen by the rest of the sasmodels library.
8"""
9from __future__ import print_function
10
11from copy import copy
12from os.path import abspath, basename, splitext
13import inspect
14
15import numpy as np  # type: ignore
16
17# Optional typing
18try:
19    from typing import Tuple, List, Union, Dict, Optional, Any, Callable, Sequence, Set
20except ImportError:
21    pass
22else:
23    Limits = Tuple[float, float]
24    #LimitsOrChoice = Union[Limits, Tuple[Sequence[str]]]
25    ParameterDef = Tuple[str, str, float, Limits, str, str]
26    ParameterSetUser = Dict[str, Union[float, List[float]]]
27    ParameterSet = Dict[str, float]
28    TestInput = Union[str, float, List[float], Tuple[float, float], List[Tuple[float, float]]]
29    TestValue = Union[float, List[float]]
30    TestCondition = Tuple[ParameterSetUser, TestInput, TestValue]
31
32MAX_PD = 4 #: Maximum number of simultaneously polydisperse parameters
33
34# assumptions about common parameters exist throughout the code, such as:
35# (1) kernel functions Iq, Iqxy, form_volume, ... don't see them
36# (2) kernel drivers assume scale is par[0] and background is par[1]
37# (3) mixture models drop the background on components and replace the scale
38#     with a scale that varies from [-inf, inf]
39# (4) product models drop the background and reassign scale
40# and maybe other places.
41# Note that scale and background cannot be coordinated parameters whose value
42# depends on the some polydisperse parameter with the current implementation
43COMMON_PARAMETERS = [
44    ("scale", "", 1, (0.0, np.inf), "", "Source intensity"),
45    ("background", "1/cm", 1e-3, (-np.inf, np.inf), "", "Source background"),
46]
47assert (len(COMMON_PARAMETERS) == 2
48        and COMMON_PARAMETERS[0][0] == "scale"
49        and COMMON_PARAMETERS[1][0] == "background"), "don't change common parameters"
50
51
52def make_parameter_table(pars):
53    # type: (List[ParameterDef]) -> ParameterTable
54    """
55    Construct a parameter table from a list of parameter definitions.
56
57    This is used by the module processor to convert the parameter block into
58    the parameter table seen in the :class:`ModelInfo` for the module.
59    """
60    processed = []
61    for p in pars:
62        if not isinstance(p, (list, tuple)) or len(p) != 6:
63            raise ValueError("Parameter should be [name, units, default, limits, type, desc], but got %r"
64                             %str(p))
65        processed.append(parse_parameter(*p))
66    partable = ParameterTable(processed)
67    return partable
68
69def parse_parameter(name, units='', default=np.NaN,
70                    user_limits=None, ptype='', description=''):
71    # type: (str, str, float, Sequence[Any], str, str) -> Parameter
72    """
73    Parse an individual parameter from the parameter definition block.
74
75    This does type and value checking on the definition, leading
76    to early failure in the model loading process and easier debugging.
77    """
78    # Parameter is a user facing class.  Do robust type checking.
79    if not isstr(name):
80        raise ValueError("expected string for parameter name %r"%name)
81    if not isstr(units):
82        raise ValueError("expected units to be a string for %s"%name)
83
84    # Process limits as [float, float] or [[str, str, ...]]
85    choices = []  # type: List[str]
86    if user_limits is None:
87        limits = (-np.inf, np.inf)
88    elif not isinstance(user_limits, (tuple, list)):
89        raise ValueError("invalid limits for %s"%name)
90    else:
91        # if limits is [[str,...]], then this is a choice list field,
92        # and limits are 1 to length of string list
93        if isinstance(user_limits[0], (tuple, list)):
94            choices = user_limits[0]
95            limits = (0., len(choices)-1.)
96            if not all(isstr(k) for k in choices):
97                raise ValueError("choices must be strings for %s"%name)
98        else:
99            try:
100                low, high = user_limits
101                limits = (float(low), float(high))
102            except Exception:
103                raise ValueError("invalid limits for %s: %r"%(name, user_limits))
104            if low >= high:
105                raise ValueError("require lower limit < upper limit")
106
107    # Process default value as float, making sure it is in range
108    if not isinstance(default, (int, float)):
109        raise ValueError("expected default %r to be a number for %s"
110                         % (default, name))
111    if default < limits[0] or default > limits[1]:
112        raise ValueError("default value %r not in range for %s"
113                         % (default, name))
114
115    # Check for valid parameter type
116    if ptype not in ("volume", "orientation", "sld", "magnetic", ""):
117        raise ValueError("unexpected type %r for %s" % (ptype, name))
118
119    # Check for valid parameter description
120    if not isstr(description):
121        raise ValueError("expected description to be a string")
122
123    # Parameter id for name[n] does not include [n]
124    if "[" in name:
125        if not name.endswith(']'):
126            raise ValueError("Expected name[len] for vector parameter %s"%name)
127        pid, ref = name[:-1].split('[', 1)
128        ref = ref.strip()
129    else:
130        pid, ref = name, None
131
132    # automatically identify sld types
133    if ptype == '' and (pid.startswith('sld') or pid.endswith('sld')):
134        ptype = 'sld'
135
136    # Check if using a vector definition, name[k], as the parameter name
137    if ref:
138        if ref == '':
139            raise ValueError("Need to specify vector length for %s"%name)
140        try:
141            length = int(ref)
142            control = None
143        except ValueError:
144            length = None
145            control = ref
146    else:
147        length = 1
148        control = None
149
150    # Build the parameter
151    parameter = Parameter(name=name, units=units, default=default,
152                          limits=limits, ptype=ptype, description=description)
153
154    # TODO: need better control over whether a parameter is polydisperse
155    parameter.polydisperse = ptype in ('orientation', 'volume')
156    parameter.relative_pd = ptype == 'volume'
157    parameter.choices = choices
158    parameter.length = length
159    parameter.length_control = control
160
161    return parameter
162
163
164def expand_pars(partable, pars):
165    # type: (ParameterTable, ParameterSetUser) ->  ParameterSet
166    """
167    Create demo parameter set from key-value pairs.
168
169    *pars* are the key-value pairs to use for the parameters.  Any
170    parameters not specified in *pars* are set from the *partable* defaults.
171
172    If *pars* references vector fields, such as thickness[n], then support
173    different ways of assigning the demo values, including assigning a
174    specific value (e.g., thickness3=50.0), assigning a new value to all
175    (e.g., thickness=50.0) or assigning values using list notation.
176    """
177    if pars is None:
178        result = partable.defaults
179    else:
180        lookup = dict((p.id, p) for p in partable.kernel_parameters)
181        result = partable.defaults.copy()
182        scalars = dict((name, value) for name, value in pars.items()
183                       if name not in lookup or lookup[name].length == 1)
184        vectors = dict((name, value) for name, value in pars.items()
185                       if name in lookup and lookup[name].length > 1)
186        #print("lookup", lookup)
187        #print("scalars", scalars)
188        #print("vectors", vectors)
189        if vectors:
190            for name, value in vectors.items():
191                if np.isscalar(value):
192                    # support for the form
193                    #    dict(thickness=0, thickness2=50)
194                    for k in range(1, lookup[name].length+1):
195                        key = name+str(k)
196                        if key not in scalars:
197                            scalars[key] = value
198                else:
199                    # supoprt for the form
200                    #    dict(thickness=[20,10,3])
201                    for (k, v) in enumerate(value):
202                        scalars[name+str(k+1)] = v
203        result.update(scalars)
204        #print("expanded", result)
205
206    return result
207
208def prefix_parameter(par, prefix):
209    # type: (Parameter, str) -> Parameter
210    """
211    Return a copy of the parameter with its name prefixed.
212    """
213    new_par = copy(par)
214    new_par.name = prefix + par.name
215    new_par.id = prefix + par.id
216
217def suffix_parameter(par, suffix):
218    # type: (Parameter, str) -> Parameter
219    """
220    Return a copy of the parameter with its name prefixed.
221    """
222    new_par = copy(par)
223    # If name has the form x[n], replace with x_suffix[n]
224    new_par.name = par.id + suffix + par.name[len(par.id):]
225    new_par.id = par.id + suffix
226
227class Parameter(object):
228    """
229    The available kernel parameters are defined as a list, with each parameter
230    defined as a sublist with the following elements:
231
232    *name* is the name that will be displayed to the user.  Names
233    should be lower case, with words separated by underscore.  If
234    acronyms are used, the whole acronym should be upper case. For vector
235    parameters, the name will be followed by *[len]* where *len* is an
236    integer length of the vector, or the name of the parameter which
237    controls the length.  The attribute *id* will be created from name
238    without the length.
239
240    *units* should be one of *degrees* for angles, *Ang* for lengths,
241    *1e-6/Ang^2* for SLDs.
242
243    *default value* will be the initial value for  the model when it
244    is selected, or when an initial value is not otherwise specified.
245
246    *limits = [lb, ub]* are the hard limits on the parameter value, used to
247    limit the polydispersity density function.  In the fit, the parameter limits
248    given to the fit are the limits  on the central value of the parameter.
249    If there is polydispersity, it will evaluate parameter values outside
250    the fit limits, but not outside the hard limits specified in the model.
251    If there are no limits, use +/-inf imported from numpy.
252
253    *type* indicates how the parameter will be used.  "volume" parameters
254    will be used in all functions.  "orientation" parameters will be used
255    in *Iqxy* and *Imagnetic*.  "magnetic* parameters will be used in
256    *Imagnetic* only.  If *type* is the empty string, the parameter will
257    be used in all of *Iq*, *Iqxy* and *Imagnetic*.  "sld" parameters
258    can automatically be promoted to magnetic parameters, each of which
259    will have a magnitude and a direction, which may be different from
260    other sld parameters. The volume parameters are used for calls
261    to form_volume within the kernel (required for volume normalization)
262    and for calls to ER and VR for effective radius and volume ratio
263    respectively.
264
265    *description* is a short description of the parameter.  This will
266    be displayed in the parameter table and used as a tool tip for the
267    parameter value in the user interface.
268
269    Additional values can be set after the parameter is created:
270
271    * *length* is the length of the field if it is a vector field
272
273    * *length_control* is the parameter which sets the vector length
274
275    * *is_control* is True if the parameter is a control parameter for a vector
276
277    * *polydisperse* is true if the parameter accepts a polydispersity
278
279    * *relative_pd* is true if that polydispersity is a portion of the
280      value (so a 10% length dipsersity would use a polydispersity value
281      of 0.1) rather than absolute dispersisity (such as an angle plus or
282      minus 15 degrees).
283
284    *choices* is the option names for a drop down list of options, as for
285    example, might be used to set the value of a shape parameter.
286
287    These values are set by :func:`make_parameter_table` and
288    :func:`parse_parameter` therein.
289    """
290    def __init__(self, name, units='', default=None, limits=(-np.inf, np.inf),
291                 ptype='', description=''):
292        # type: (str, str, float, Limits, str, str) -> None
293        self.id = name.split('[')[0].strip() # type: str
294        self.name = name                     # type: str
295        self.units = units                   # type: str
296        self.default = default               # type: float
297        self.limits = limits                 # type: Limits
298        self.type = ptype                    # type: str
299        self.description = description       # type: str
300
301        # Length and length_control will be filled in once the complete
302        # parameter table is available.
303        self.length = 1                      # type: int
304        self.length_control = None           # type: Optional[str]
305        self.is_control = False              # type: bool
306
307        # TODO: need better control over whether a parameter is polydisperse
308        self.polydisperse = False            # type: bool
309        self.relative_pd = False             # type: bool
310
311        # choices are also set externally.
312        self.choices = []                    # type: List[str]
313
314    def as_definition(self):
315        # type: () -> str
316        """
317        Declare space for the variable in a parameter structure.
318
319        For example, the parameter thickness with length 3 will
320        return "double thickness[3];", with no spaces before and
321        no new line character afterward.
322        """
323        if self.length == 1:
324            return "double %s;"%self.id
325        else:
326            return "double %s[%d];"%(self.id, self.length)
327
328    def as_function_argument(self):
329        # type: () -> str
330        r"""
331        Declare the variable as a function argument.
332
333        For example, the parameter thickness with length 3 will
334        return "double \*thickness", with no spaces before and
335        no comma afterward.
336        """
337        if self.length == 1:
338            return "double %s"%self.id
339        else:
340            return "double *%s"%self.id
341
342    def as_call_reference(self, prefix=""):
343        # type: (str) -> str
344        """
345        Return *prefix* + parameter name.  For struct references, use "v."
346        as the prefix.
347        """
348        # Note: if the parameter is a struct type, then we will need to use
349        # &prefix+id.  For scalars and vectors we can just use prefix+id.
350        return prefix + self.id
351
352    def __str__(self):
353        # type: () -> str
354        return "<%s>"%self.name
355
356    def __repr__(self):
357        # type: () -> str
358        return "P<%s>"%self.name
359
360
361class ParameterTable(object):
362    """
363    ParameterTable manages the list of available parameters.
364
365    There are a couple of complications which mean that the list of parameters
366    for the kernel differs from the list of parameters that the user sees.
367
368    (1) Common parameters.  Scale and background are implicit to every model,
369    but are not passed to the kernel.
370
371    (2) Vector parameters.  Vector parameters are passed to the kernel as a
372    pointer to an array, e.g., thick[], but they are seen by the user as n
373    separate parameters thick1, thick2, ...
374
375    Therefore, the parameter table is organized by how it is expected to be
376    used. The following information is needed to set up the kernel functions:
377
378    * *kernel_parameters* is the list of parameters in the kernel parameter
379      table, with vector parameter p declared as p[].
380
381    * *iq_parameters* is the list of parameters to the Iq(q, ...) function,
382      with vector parameter p sent as p[].
383
384    * *iqxy_parameters* is the list of parameters to the Iqxy(qx, qy, ...)
385      function, with vector parameter p sent as p[].
386
387    * *form_volume_parameters* is the list of parameters to the form_volume(...)
388      function, with vector parameter p sent as p[].
389
390    Problem details, which sets up the polydispersity loops, requires the
391    following:
392
393    * *theta_offset* is the offset of the theta parameter in the kernel parameter
394      table, with vector parameters counted as n individual parameters
395      p1, p2, ..., or offset is -1 if there is no theta parameter.
396
397    * *max_pd* is the maximum number of polydisperse parameters, with vector
398      parameters counted as n individual parameters p1, p2, ...  Note that
399      this number is limited to sasmodels.modelinfo.MAX_PD.
400
401    * *npars* is the total number of parameters to the kernel, with vector
402      parameters counted as n individual parameters p1, p2, ...
403
404    * *call_parameters* is the complete list of parameters to the kernel,
405      including scale and background, with vector parameters recorded as
406      individual parameters p1, p2, ...
407
408    * *active_1d* is the set of names that may be polydisperse for 1d data
409
410    * *active_2d* is the set of names that may be polydisperse for 2d data
411
412    User parameters are the set of parameters visible to the user, including
413    the scale and background parameters that the kernel does not see.  User
414    parameters don't use vector notation, and instead use p1, p2, ...
415    """
416    # scale and background are implicit parameters
417    COMMON = [Parameter(*p) for p in COMMON_PARAMETERS]
418
419    def __init__(self, parameters):
420        # type: (List[Parameter]) -> None
421        self.kernel_parameters = parameters
422        self._set_vector_lengths()
423
424        self.npars = sum(p.length for p in self.kernel_parameters)
425        self.nmagnetic = sum(p.length for p in self.kernel_parameters
426                             if p.type == 'sld')
427        self.nvalues = 2 + self.npars
428        if self.nmagnetic:
429            self.nvalues += 3 + 3*self.nmagnetic
430
431        self.call_parameters = self._get_call_parameters()
432        self.defaults = self._get_defaults()
433        #self._name_table= dict((p.id, p) for p in parameters)
434
435        # Set the kernel parameters.  Assumes background and scale are the
436        # first two parameters in the parameter list, but these are not sent
437        # to the underlying kernel functions.
438        self.iq_parameters = [p for p in self.kernel_parameters
439                              if p.type not in ('orientation', 'magnetic')]
440        self.iqxy_parameters = [p for p in self.kernel_parameters
441                                if p.type != 'magnetic']
442        self.form_volume_parameters = [p for p in self.kernel_parameters
443                                       if p.type == 'volume']
444
445        # Theta offset
446        offset = 0
447        for p in self.kernel_parameters:
448            if p.name == 'theta':
449                self.theta_offset = offset
450                break
451            offset += p.length
452        else:
453            self.theta_offset = -1
454
455        # number of polydisperse parameters
456        num_pd = sum(p.length for p in self.kernel_parameters if p.polydisperse)
457        # Don't use more polydisperse parameters than are available in the model
458        self.max_pd = min(num_pd, MAX_PD)
459
460        # true if has 2D parameters
461        self.has_2d = any(p.type in ('orientation', 'magnetic')
462                          for p in self.kernel_parameters)
463        self.magnetism_index = [k for k, p in enumerate(self.call_parameters)
464                                if p.id.startswith('M0:')]
465
466        self.pd_1d = set(p.name for p in self.call_parameters
467                         if p.polydisperse and p.type not in ('orientation', 'magnetic'))
468        self.pd_2d = set(p.name for p in self.call_parameters if p.polydisperse)
469
470    def __getitem__(self, key):
471        # Find the parameter definition
472        for par in self.call_parameters:
473            if par.name == key:
474                break
475        else:
476            raise KeyError("unknown parameter %r"%key)
477        return par
478
479    def _set_vector_lengths(self):
480        # type: () -> List[str]
481        """
482        Walk the list of kernel parameters, setting the length field of the
483        vector parameters from the upper limit of the reference parameter.
484
485        This needs to be done once the entire parameter table is available
486        since the reference may still be undefined when the parameter is
487        initially created.
488
489        Returns the list of control parameter names.
490
491        Note: This modifies the underlying parameter object.
492        """
493        # Sort out the length of the vector parameters such as thickness[n]
494
495        for p in self.kernel_parameters:
496            if p.length_control:
497                for ref in self.kernel_parameters:
498                    if ref.id == p.length_control:
499                        break
500                else:
501                    raise ValueError("no reference variable %r for %s"
502                                     % (p.length_control, p.name))
503                ref.is_control = True
504                ref.polydisperse = False
505                low, high = ref.limits
506                if int(low) != low or int(high) != high or low < 0 or high > 20:
507                    raise ValueError("expected limits on %s to be within [0, 20]"
508                                     % ref.name)
509                p.length = int(high)
510
511    def _get_defaults(self):
512        # type: () -> ParameterSet
513        """
514        Get a list of parameter defaults from the parameters.
515
516        Expands vector parameters into parameter id+number.
517        """
518        # Construct default values, including vector defaults
519        defaults = {}
520        for p in self.call_parameters:
521            if p.length == 1:
522                defaults[p.id] = p.default
523            else:
524                for k in range(1, p.length+1):
525                    defaults["%s%d"%(p.id, k)] = p.default
526        return defaults
527
528    def _get_call_parameters(self):
529        # type: () -> List[Parameter]
530        full_list = self.COMMON[:]
531        for p in self.kernel_parameters:
532            if p.length == 1:
533                full_list.append(p)
534            else:
535                for k in range(1, p.length+1):
536                    pk = Parameter(p.id+str(k), p.units, p.default,
537                                   p.limits, p.type, p.description)
538                    pk.polydisperse = p.polydisperse
539                    pk.relative_pd = p.relative_pd
540                    pk.choices = p.choices
541                    full_list.append(pk)
542
543        # Add the magnetic parameters to the end of the call parameter list.
544        if self.nmagnetic > 0:
545            full_list.extend([
546                Parameter('up:frac_i', '', 0., [0., 1.],
547                          'magnetic', 'fraction of spin up incident'),
548                Parameter('up:frac_f', '', 0., [0., 1.],
549                          'magnetic', 'fraction of spin up final'),
550                Parameter('up:angle', 'degress', 0., [0., 360.],
551                          'magnetic', 'spin up angle'),
552            ])
553            slds = [p for p in full_list if p.type == 'sld']
554            for p in slds:
555                full_list.extend([
556                    Parameter('M0:'+p.id, '1e-6/Ang^2', 0., [-np.inf, np.inf],
557                              'magnetic', 'magnetic amplitude for '+p.description),
558                    Parameter('mtheta:'+p.id, 'degrees', 0., [-90., 90.],
559                              'magnetic', 'magnetic latitude for '+p.description),
560                    Parameter('mphi:'+p.id, 'degrees', 0., [-180., 180.],
561                              'magnetic', 'magnetic longitude for '+p.description),
562                ])
563        #print("call parameters", full_list)
564        return full_list
565
566    def user_parameters(self, pars, is2d=True):
567        # type: (Dict[str, float], bool) -> List[Parameter]
568        """
569        Return the list of parameters for the given data type.
570
571        Vector parameters are expanded in place.  If multiple parameters
572        share the same vector length, then the parameters will be interleaved
573        in the result.  The control parameters come first.  For example,
574        if the parameter table is ordered as::
575
576            sld_core
577            sld_shell[num_shells]
578            sld_solvent
579            thickness[num_shells]
580            num_shells
581
582        and *pars[num_shells]=2* then the returned list will be::
583
584            num_shells
585            scale
586            background
587            sld_core
588            sld_shell1
589            thickness1
590            sld_shell2
591            thickness2
592            sld_solvent
593
594        Note that shell/thickness pairs are grouped together in the result
595        even though they were not grouped in the incoming table.  The control
596        parameter is always returned first since the GUI will want to set it
597        early, and rerender the table when it is changed.
598
599        Parameters marked as sld will automatically have a set of associated
600        magnetic parameters (m0:p, mtheta:p, mphi:p), as well as polarization
601        information (up:theta, up:frac_i, up:frac_f).
602        """
603        # control parameters go first
604        control = [p for p in self.kernel_parameters if p.is_control]
605
606        # Gather entries such as name[n] into groups of the same n
607        dependent = {} # type: Dict[str, List[Parameter]]
608        dependent.update((p.id, []) for p in control)
609        for p in self.kernel_parameters:
610            if p.length_control is not None:
611                dependent[p.length_control].append(p)
612
613        # Gather entries such as name[4] into groups of the same length
614        fixed_length = {}  # type: Dict[int, List[Parameter]]
615        for p in self.kernel_parameters:
616            if p.length > 1 and p.length_control is None:
617                fixed_length.setdefault(p.length, []).append(p)
618
619        # Using the call_parameters table, we already have expanded forms
620        # for each of the vector parameters; put them in a lookup table
621        # Note: p.id and p.name are currently identical for the call parameters
622        expanded_pars = dict((p.id, p) for p in self.call_parameters)
623
624        def append_group(name):
625            """add the named parameter, and related magnetic parameters if any"""
626            result.append(expanded_pars[name])
627            if is2d:
628                for tag in 'M0:', 'mtheta:', 'mphi:':
629                    if tag+name in expanded_pars:
630                        result.append(expanded_pars[tag+name])
631
632        # Gather the user parameters in order
633        result = control + self.COMMON
634        for p in self.kernel_parameters:
635            if not is2d and p.type in ('orientation', 'magnetic'):
636                pass
637            elif p.is_control:
638                pass # already added
639            elif p.length_control is not None:
640                table = dependent.get(p.length_control, [])
641                if table:
642                    # look up length from incoming parameters
643                    table_length = int(pars.get(p.length_control, p.length))
644                    del dependent[p.length_control] # first entry seen
645                    for k in range(1, table_length+1):
646                        for entry in table:
647                            append_group(entry.id+str(k))
648                else:
649                    pass # already processed all entries
650            elif p.length > 1:
651                table = fixed_length.get(p.length, [])
652                if table:
653                    table_length = p.length
654                    del fixed_length[p.length]
655                    for k in range(1, table_length+1):
656                        for entry in table:
657                            append_group(entry.id+str(k))
658                else:
659                    pass # already processed all entries
660            else:
661                append_group(p.id)
662
663        if is2d and 'up:angle' in expanded_pars:
664            result.extend([
665                expanded_pars['up:frac_i'],
666                expanded_pars['up:frac_f'],
667                expanded_pars['up:angle'],
668            ])
669
670        return result
671
672def isstr(x):
673    # type: (Any) -> bool
674    """
675    Return True if the object is a string.
676    """
677    # TODO: 2-3 compatible tests for str, including unicode strings
678    return isinstance(x, str)
679
680
681def _find_source_lines(model_info, kernel_module):
682    """
683    Identify the location of the C source inside the model definition file.
684
685    This code runs through the source of the kernel module looking for
686    lines that start with 'Iq', 'Iqxy' or 'form_volume'.  Clearly there are
687    all sorts of reasons why this might not work (e.g., code commented out
688    in a triple-quoted line block, code built using string concatenation,
689    or code defined in the branch of an 'if' block), but it should work
690    properly in the 95% case, and getting the incorrect line number will
691    be harmless.
692    """
693    # Check if we need line numbers at all
694    if callable(model_info.Iq):
695        return None
696
697    if (model_info.Iq is None
698            and model_info.Iqxy is None
699            and model_info.Imagnetic is None
700            and model_info.form_volume is None):
701        return
702
703    # find the defintion lines for the different code blocks
704    try:
705        source = inspect.getsource(kernel_module)
706    except IOError:
707        return
708    for k, v in enumerate(source.split('\n')):
709        if v.startswith('Imagnetic'):
710            model_info._Imagnetic_line = k+1
711        elif v.startswith('Iqxy'):
712            model_info._Iqxy_line = k+1
713        elif v.startswith('Iq'):
714            model_info._Iq_line = k+1
715        elif v.startswith('form_volume'):
716            model_info._form_volume_line = k+1
717
718
719def make_model_info(kernel_module):
720    # type: (module) -> ModelInfo
721    """
722    Extract the model definition from the loaded kernel module.
723
724    Fill in default values for parts of the module that are not provided.
725
726    Note: vectorized Iq and Iqxy functions will be created for python
727    models when the model is first called, not when the model is loaded.
728    """
729    if hasattr(kernel_module, "model_info"):
730        # Custom sum/multi models
731        return kernel_module.model_info
732    info = ModelInfo()
733    #print("make parameter table", kernel_module.parameters)
734    parameters = make_parameter_table(getattr(kernel_module, 'parameters', []))
735    demo = expand_pars(parameters, getattr(kernel_module, 'demo', None))
736    filename = abspath(kernel_module.__file__).replace('.pyc', '.py')
737    kernel_id = splitext(basename(filename))[0]
738    name = getattr(kernel_module, 'name', None)
739    if name is None:
740        name = " ".join(w.capitalize() for w in kernel_id.split('_'))
741
742    info.id = kernel_id  # string used to load the kernel
743    info.filename = filename
744    info.name = name
745    info.title = getattr(kernel_module, 'title', name+" model")
746    info.description = getattr(kernel_module, 'description', 'no description')
747    info.parameters = parameters
748    info.demo = demo
749    info.composition = None
750    info.docs = kernel_module.__doc__
751    info.category = getattr(kernel_module, 'category', None)
752    info.structure_factor = getattr(kernel_module, 'structure_factor', False)
753    info.profile_axes = getattr(kernel_module, 'profile_axes', ['x', 'y'])
754    info.source = getattr(kernel_module, 'source', [])
755    # TODO: check the structure of the tests
756    info.tests = getattr(kernel_module, 'tests', [])
757    info.ER = getattr(kernel_module, 'ER', None) # type: ignore
758    info.VR = getattr(kernel_module, 'VR', None) # type: ignore
759    info.form_volume = getattr(kernel_module, 'form_volume', None) # type: ignore
760    info.Iq = getattr(kernel_module, 'Iq', None) # type: ignore
761    info.Iqxy = getattr(kernel_module, 'Iqxy', None) # type: ignore
762    info.Imagnetic = getattr(kernel_module, 'Imagnetic', None) # type: ignore
763    info.profile = getattr(kernel_module, 'profile', None) # type: ignore
764    info.sesans = getattr(kernel_module, 'sesans', None) # type: ignore
765    # Default single and opencl to True for C models.  Python models have callable Iq.
766    info.opencl = getattr(kernel_module, 'opencl', not callable(info.Iq))
767    info.single = getattr(kernel_module, 'single', not callable(info.Iq))
768    info.random = getattr(kernel_module, 'random', None)
769
770    # multiplicity info
771    control_pars = [p.id for p in parameters.kernel_parameters if p.is_control]
772    default_control = control_pars[0] if control_pars else None
773    info.control = getattr(kernel_module, 'control', default_control)
774    info.hidden = getattr(kernel_module, 'hidden', None) # type: ignore
775
776    _find_source_lines(info, kernel_module)
777
778    return info
779
780class ModelInfo(object):
781    """
782    Interpret the model definition file, categorizing the parameters.
783
784    The module can be loaded with a normal python import statement if you
785    know which module you need, or with __import__('sasmodels.model.'+name)
786    if the name is in a string.
787
788    The structure should be mostly static, other than the delayed definition
789    of *Iq* and *Iqxy* if they need to be defined.
790    """
791    #: Full path to the file defining the kernel, if any.
792    filename = None         # type: Optional[str]
793    #: Id of the kernel used to load it from the filesystem.
794    id = None               # type: str
795    #: Display name of the model, which defaults to the model id but with
796    #: capitalization of the parts so for example core_shell defaults to
797    #: "Core Shell".
798    name = None             # type: str
799    #: Short description of the model.
800    title = None            # type: str
801    #: Long description of the model.
802    description = None      # type: str
803    #: Model parameter table. Parameters are defined using a list of parameter
804    #: definitions, each of which is contains parameter name, units,
805    #: default value, limits, type and description.  See :class:`Parameter`
806    #: for details on the individual parameters.  The parameters are gathered
807    #: into a :class:`ParameterTable`, which provides various views into the
808    #: parameter list.
809    parameters = None       # type: ParameterTable
810    #: Demo parameters as a *parameter:value* map used as the default values
811    #: for :mod:`compare`.  Any parameters not set in *demo* will use the
812    #: defaults from the parameter table.  That means no polydispersity, and
813    #: in the case of multiplicity models, a minimal model with no interesting
814    #: scattering.
815    demo = None             # type: Dict[str, float]
816    #: Composition is None if this is an independent model, or it is a
817    #: tuple with comoposition type ('product' or 'misture') and a list of
818    #: :class:`ModelInfo` blocks for the composed objects.  This allows us
819    #: to rebuild a complete mixture or product model from the info block.
820    #: *composition* is not given in the model definition file, but instead
821    #: arises when the model is constructed using names such as
822    #: *sphere*hardsphere* or *cylinder+sphere*.
823    composition = None      # type: Optional[Tuple[str, List[ModelInfo]]]
824    #: Name of the control parameter for a variant model such as :ref:`rpa`.
825    #: The *control* parameter should appear in the parameter table, with
826    #: limits defined as *[CASES]*, for case names such as
827    #: *CASES = ["diblock copolymer", "triblock copolymer", ...]*.
828    #: This should give *limits=[[case1, case2, ...]]*, but the
829    #: model loader translates this to *limits=[0, len(CASES)-1]*, and adds
830    #: *choices=CASES* to the :class:`Parameter` definition. Note that
831    #: models can use a list of cases as a parameter without it being a
832    #: control parameter.  Either way, the parameter is sent to the model
833    #: evaluator as *float(choice_num)*, where choices are numbered from 0.
834    #: See also :attr:`hidden`.
835    control = None          # type: str
836    #: Different variants require different parameters.  In order to show
837    #: just the parameters needed for the variant selected by :attr:`control`,
838    #: you should provide a function *hidden(control) -> set(['a', 'b', ...])*
839    #: indicating which parameters need to be hidden.  For multiplicity
840    #: models, you need to use the complete name of the parameter, including
841    #: its number.  So for example, if variant "a" uses only *sld1* and *sld2*,
842    #: then *sld3*, *sld4* and *sld5* of multiplicity parameter *sld[5]*
843    #: should be in the hidden set.
844    hidden = None           # type: Optional[Callable[[int], Set[str]]]
845    #: Doc string from the top of the model file.  This should be formatted
846    #: using ReStructuredText format, with latex markup in ".. math"
847    #: environments, or in dollar signs.  This will be automatically
848    #: extracted to a .rst file by :func:`generate.make_docs`, then
849    #: converted to HTML or PDF by Sphinx.
850    docs = None             # type: str
851    #: Location of the model description in the documentation.  This takes the
852    #: form of "section" or "section:subsection".  So for example,
853    #: :ref:`porod` uses *category="shape-independent"* so it is in the
854    #: :ref:`shape-independent` section whereas
855    #: :ref:`capped-cylinder` uses: *category="shape:cylinder"*, which puts
856    #: it in the :ref:`shape-cylinder` section.
857    category = None         # type: Optional[str]
858    #: True if the model can be computed accurately with single precision.
859    #: This is True by default, but models such as :ref:`bcc-paracrystal` set
860    #: it to False because they require double precision calculations.
861    single = None           # type: bool
862    #: True if the model can be run as an opencl model.  If for some reason
863    #: the model cannot be run in opencl (e.g., because the model passes
864    #: functions by reference), then set this to false.
865    opencl = None           # type: bool
866    #: True if the model is a structure factor used to model the interaction
867    #: between form factor models.  This will default to False if it is not
868    #: provided in the file.
869    structure_factor = None # type: bool
870    #: List of C source files used to define the model.  The source files
871    #: should define the *Iq* function, and possibly *Iqxy*, though a default
872    #: *Iqxy = Iq(sqrt(qx**2+qy**2)* will be created if no *Iqxy* is provided.
873    #: Files containing the most basic functions must appear first in the list,
874    #: followed by the files that use those functions.  Form factors are
875    #: indicated by providing a :attr:`ER` function.
876    source = None           # type: List[str]
877    #: The set of tests that must pass.  The format of the tests is described
878    #: in :mod:`model_test`.
879    tests = None            # type: List[TestCondition]
880    #: Returns the effective radius of the model given its volume parameters.
881    #: The presence of *ER* indicates that the model is a form factor model
882    #: that may be used together with a structure factor to form an implicit
883    #: multiplication model.
884    #:
885    #: The parameters to the *ER* function must be marked with type *volume*.
886    #: in the parameter table.  They will appear in the same order as they
887    #: do in the table.  The values passed to *ER* will be vectors, with one
888    #: value for each polydispersity condition.  For example, if the model
889    #: is polydisperse over both length and radius, then both length and
890    #: radius will have the same number of values in the vector, with one
891    #: value for each *length X radius*.  If only *radius* is polydisperse,
892    #: then the value for *length* will be repeated once for each value of
893    #: *radius*.  The *ER* function should return one effective radius for
894    #: each parameter set.  Multiplicity parameters will be received as
895    #: arrays, with one row per polydispersity condition.
896    ER = None               # type: Optional[Callable[[np.ndarray], np.ndarray]]
897    #: Returns the occupied volume and the total volume for each parameter set.
898    #: See :attr:`ER` for details on the parameters.
899    VR = None               # type: Optional[Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]]]
900    #: Returns the form volume for python-based models.  Form volume is needed
901    #: for volume normalization in the polydispersity integral.  If no
902    #: parameters are *volume* parameters, then form volume is not needed.
903    #: For C-based models, (with :attr:`sources` defined, or with :attr:`Iq`
904    #: defined using a string containing C code), form_volume must also be
905    #: C code, either defined as a string, or in the sources.
906    form_volume = None      # type: Union[None, str, Callable[[np.ndarray], float]]
907    #: Returns *I(q, a, b, ...)* for parameters *a*, *b*, etc. defined
908    #: by the parameter table.  *Iq* can be defined as a python function, or
909    #: as a C function.  If it is defined in C, then set *Iq* to the body of
910    #: the C function, including the return statement.  This function takes
911    #: values for *q* and each of the parameters as separate *double* values
912    #: (which may be converted to float or long double by sasmodels).  All
913    #: source code files listed in :attr:`sources` will be loaded before the
914    #: *Iq* function is defined.  If *Iq* is not present, then sources should
915    #: define *static double Iq(double q, double a, double b, ...)* which
916    #: will return *I(q, a, b, ...)*.  Multiplicity parameters are sent as
917    #: pointers to doubles.  Constants in floating point expressions should
918    #: include the decimal point. See :mod:`generate` for more details.
919    Iq = None               # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
920    #: Returns *I(qx, qy, a, b, ...)*.  The interface follows :attr:`Iq`.
921    Iqxy = None             # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
922    #: Returns *I(qx, qy, a, b, ...)*.  The interface follows :attr:`Iq`.
923    Imagnetic = None        # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
924    #: Returns a model profile curve *x, y*.  If *profile* is defined, this
925    #: curve will appear in response to the *Show* button in SasView.  Use
926    #: :attr:`profile_axes` to set the axis labels.  Note that *y* values
927    #: will be scaled by 1e6 before plotting.
928    profile = None          # type: Optional[Callable[[np.ndarray], None]]
929    #: Axis labels for the :attr:`profile` plot.  The default is *['x', 'y']*.
930    #: Only the *x* component is used for now.
931    profile_axes = None     # type: Tuple[str, str]
932    #: Returns *sesans(z, a, b, ...)* for models which can directly compute
933    #: the SESANS correlation function.  Note: not currently implemented.
934    sesans = None           # type: Optional[Callable[[np.ndarray], np.ndarray]]
935
936    # line numbers within the python file for bits of C source, if defined
937    # NB: some compilers fail with a "#line 0" directive, so default to 1.
938    _Imagnetic_line = 1
939    _Iqxy_line = 1
940    _Iq_line = 1
941    _form_volume_line = 1
942
943
944    def __init__(self):
945        # type: () -> None
946        pass
947
948    def get_hidden_parameters(self, control):
949        """
950        Returns the set of hidden parameters for the model.  *control* is the
951        value of the control parameter.  Note that multiplicity models have
952        an implicit control parameter, which is the parameter that controls
953        the multiplicity.
954        """
955        if self.hidden is not None:
956            hidden = self.hidden(control)
957        else:
958            controls = [p for p in self.parameters.kernel_parameters
959                        if p.is_control]
960            if len(controls) != 1:
961                raise ValueError("more than one control parameter")
962            hidden = set(p.id+str(k)
963                         for p in self.parameters.kernel_parameters
964                         for k in range(control+1, p.length+1)
965                         if p.length > 1)
966        return hidden
Note: See TracBrowser for help on using the repository browser.