source: sasmodels/sasmodels/modelinfo.py @ 724257c

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 724257c was 724257c, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

don't reload custom models in sasview unless the timestamp on the file has changed

  • Property mode set to 100644
File size: 41.9 KB
Line 
1"""
2Model Info and Parameter Tables
3===============================
4
5Defines :class:`ModelInfo` and :class:`ParameterTable` and the routines for
6manipulating them.  In particular, :func:`make_model_info` converts a kernel
7module into the model info block as seen by the rest of the sasmodels library.
8"""
9from __future__ import print_function
10
11from copy import copy
12from os.path import abspath, basename, splitext
13import inspect
14
15import numpy as np  # type: ignore
16
17# Optional typing
18try:
19    from typing import Tuple, List, Union, Dict, Optional, Any, Callable, Sequence, Set
20except ImportError:
21    pass
22else:
23    Limits = Tuple[float, float]
24    #LimitsOrChoice = Union[Limits, Tuple[Sequence[str]]]
25    ParameterDef = Tuple[str, str, float, Limits, str, str]
26    ParameterSetUser = Dict[str, Union[float, List[float]]]
27    ParameterSet = Dict[str, float]
28    TestInput = Union[str, float, List[float], Tuple[float, float], List[Tuple[float, float]]]
29    TestValue = Union[float, List[float]]
30    TestCondition = Tuple[ParameterSetUser, TestInput, TestValue]
31
32MAX_PD = 4 #: Maximum number of simultaneously polydisperse parameters
33
34# assumptions about common parameters exist throughout the code, such as:
35# (1) kernel functions Iq, Iqxy, form_volume, ... don't see them
36# (2) kernel drivers assume scale is par[0] and background is par[1]
37# (3) mixture models drop the background on components and replace the scale
38#     with a scale that varies from [-inf, inf]
39# (4) product models drop the background and reassign scale
40# and maybe other places.
41# Note that scale and background cannot be coordinated parameters whose value
42# depends on the some polydisperse parameter with the current implementation
43COMMON_PARAMETERS = [
44    ("scale", "", 1, (0.0, np.inf), "", "Source intensity"),
45    ("background", "1/cm", 1e-3, (-np.inf, np.inf), "", "Source background"),
46]
47assert (len(COMMON_PARAMETERS) == 2
48        and COMMON_PARAMETERS[0][0] == "scale"
49        and COMMON_PARAMETERS[1][0] == "background"), "don't change common parameters"
50
51
52def make_parameter_table(pars):
53    # type: (List[ParameterDef]) -> ParameterTable
54    """
55    Construct a parameter table from a list of parameter definitions.
56
57    This is used by the module processor to convert the parameter block into
58    the parameter table seen in the :class:`ModelInfo` for the module.
59    """
60    processed = []
61    for p in pars:
62        if not isinstance(p, (list, tuple)) or len(p) != 6:
63            raise ValueError("Parameter should be [name, units, default, limits, type, desc], but got %r"
64                             %str(p))
65        processed.append(parse_parameter(*p))
66    partable = ParameterTable(processed)
67    return partable
68
69def parse_parameter(name, units='', default=np.NaN,
70                    user_limits=None, ptype='', description=''):
71    # type: (str, str, float, Sequence[Any], str, str) -> Parameter
72    """
73    Parse an individual parameter from the parameter definition block.
74
75    This does type and value checking on the definition, leading
76    to early failure in the model loading process and easier debugging.
77    """
78    # Parameter is a user facing class.  Do robust type checking.
79    if not isstr(name):
80        raise ValueError("expected string for parameter name %r"%name)
81    if not isstr(units):
82        raise ValueError("expected units to be a string for %s"%name)
83
84    # Process limits as [float, float] or [[str, str, ...]]
85    choices = []  # type: List[str]
86    if user_limits is None:
87        limits = (-np.inf, np.inf)
88    elif not isinstance(user_limits, (tuple, list)):
89        raise ValueError("invalid limits for %s"%name)
90    else:
91        # if limits is [[str,...]], then this is a choice list field,
92        # and limits are 1 to length of string list
93        if isinstance(user_limits[0], (tuple, list)):
94            choices = user_limits[0]
95            limits = (0., len(choices)-1.)
96            if not all(isstr(k) for k in choices):
97                raise ValueError("choices must be strings for %s"%name)
98        else:
99            try:
100                low, high = user_limits
101                limits = (float(low), float(high))
102            except Exception:
103                raise ValueError("invalid limits for %s: %r"%(name, user_limits))
104            if low >= high:
105                raise ValueError("require lower limit < upper limit")
106
107    # Process default value as float, making sure it is in range
108    if not isinstance(default, (int, float)):
109        raise ValueError("expected default %r to be a number for %s"
110                         % (default, name))
111    if default < limits[0] or default > limits[1]:
112        raise ValueError("default value %r not in range for %s"
113                         % (default, name))
114
115    # Check for valid parameter type
116    if ptype not in ("volume", "orientation", "sld", "magnetic", ""):
117        raise ValueError("unexpected type %r for %s" % (ptype, name))
118
119    # Check for valid parameter description
120    if not isstr(description):
121        raise ValueError("expected description to be a string")
122
123    # Parameter id for name[n] does not include [n]
124    if "[" in name:
125        if not name.endswith(']'):
126            raise ValueError("Expected name[len] for vector parameter %s"%name)
127        pid, ref = name[:-1].split('[', 1)
128        ref = ref.strip()
129    else:
130        pid, ref = name, None
131
132    # automatically identify sld types
133    if ptype == '' and (pid.startswith('sld') or pid.endswith('sld')):
134        ptype = 'sld'
135
136    # Check if using a vector definition, name[k], as the parameter name
137    if ref:
138        if ref == '':
139            raise ValueError("Need to specify vector length for %s"%name)
140        try:
141            length = int(ref)
142            control = None
143        except ValueError:
144            length = None
145            control = ref
146    else:
147        length = 1
148        control = None
149
150    # Build the parameter
151    parameter = Parameter(name=name, units=units, default=default,
152                          limits=limits, ptype=ptype, description=description)
153
154    # TODO: need better control over whether a parameter is polydisperse
155    parameter.polydisperse = ptype in ('orientation', 'volume')
156    parameter.relative_pd = ptype == 'volume'
157    parameter.choices = choices
158    parameter.length = length
159    parameter.length_control = control
160
161    return parameter
162
163
164def expand_pars(partable, pars):
165    # type: (ParameterTable, ParameterSetUser) ->  ParameterSet
166    """
167    Create demo parameter set from key-value pairs.
168
169    *pars* are the key-value pairs to use for the parameters.  Any
170    parameters not specified in *pars* are set from the *partable* defaults.
171
172    If *pars* references vector fields, such as thickness[n], then support
173    different ways of assigning the demo values, including assigning a
174    specific value (e.g., thickness3=50.0), assigning a new value to all
175    (e.g., thickness=50.0) or assigning values using list notation.
176    """
177    if pars is None:
178        result = partable.defaults
179    else:
180        lookup = dict((p.id, p) for p in partable.kernel_parameters)
181        result = partable.defaults.copy()
182        scalars = dict((name, value) for name, value in pars.items()
183                       if name not in lookup or lookup[name].length == 1)
184        vectors = dict((name, value) for name, value in pars.items()
185                       if name in lookup and lookup[name].length > 1)
186        #print("lookup", lookup)
187        #print("scalars", scalars)
188        #print("vectors", vectors)
189        if vectors:
190            for name, value in vectors.items():
191                if np.isscalar(value):
192                    # support for the form
193                    #    dict(thickness=0, thickness2=50)
194                    for k in range(1, lookup[name].length+1):
195                        key = name+str(k)
196                        if key not in scalars:
197                            scalars[key] = value
198                else:
199                    # supoprt for the form
200                    #    dict(thickness=[20,10,3])
201                    for (k, v) in enumerate(value):
202                        scalars[name+str(k+1)] = v
203        result.update(scalars)
204        #print("expanded", result)
205
206    return result
207
208def prefix_parameter(par, prefix):
209    # type: (Parameter, str) -> Parameter
210    """
211    Return a copy of the parameter with its name prefixed.
212    """
213    new_par = copy(par)
214    new_par.name = prefix + par.name
215    new_par.id = prefix + par.id
216
217def suffix_parameter(par, suffix):
218    # type: (Parameter, str) -> Parameter
219    """
220    Return a copy of the parameter with its name prefixed.
221    """
222    new_par = copy(par)
223    # If name has the form x[n], replace with x_suffix[n]
224    new_par.name = par.id + suffix + par.name[len(par.id):]
225    new_par.id = par.id + suffix
226
227class Parameter(object):
228    """
229    The available kernel parameters are defined as a list, with each parameter
230    defined as a sublist with the following elements:
231
232    *name* is the name that will be displayed to the user.  Names
233    should be lower case, with words separated by underscore.  If
234    acronyms are used, the whole acronym should be upper case. For vector
235    parameters, the name will be followed by *[len]* where *len* is an
236    integer length of the vector, or the name of the parameter which
237    controls the length.  The attribute *id* will be created from name
238    without the length.
239
240    *units* should be one of *degrees* for angles, *Ang* for lengths,
241    *1e-6/Ang^2* for SLDs.
242
243    *default value* will be the initial value for  the model when it
244    is selected, or when an initial value is not otherwise specified.
245
246    *limits = [lb, ub]* are the hard limits on the parameter value, used to
247    limit the polydispersity density function.  In the fit, the parameter limits
248    given to the fit are the limits  on the central value of the parameter.
249    If there is polydispersity, it will evaluate parameter values outside
250    the fit limits, but not outside the hard limits specified in the model.
251    If there are no limits, use +/-inf imported from numpy.
252
253    *type* indicates how the parameter will be used.  "volume" parameters
254    will be used in all functions.  "orientation" parameters will be used
255    in *Iqxy* and *Imagnetic*.  "magnetic* parameters will be used in
256    *Imagnetic* only.  If *type* is the empty string, the parameter will
257    be used in all of *Iq*, *Iqxy* and *Imagnetic*.  "sld" parameters
258    can automatically be promoted to magnetic parameters, each of which
259    will have a magnitude and a direction, which may be different from
260    other sld parameters. The volume parameters are used for calls
261    to form_volume within the kernel (required for volume normalization)
262    and for calls to ER and VR for effective radius and volume ratio
263    respectively.
264
265    *description* is a short description of the parameter.  This will
266    be displayed in the parameter table and used as a tool tip for the
267    parameter value in the user interface.
268
269    Additional values can be set after the parameter is created:
270
271    * *length* is the length of the field if it is a vector field
272
273    * *length_control* is the parameter which sets the vector length
274
275    * *is_control* is True if the parameter is a control parameter for a vector
276
277    * *polydisperse* is true if the parameter accepts a polydispersity
278
279    * *relative_pd* is true if that polydispersity is a portion of the
280      value (so a 10% length dipsersity would use a polydispersity value
281      of 0.1) rather than absolute dispersisity (such as an angle plus or
282      minus 15 degrees).
283
284    *choices* is the option names for a drop down list of options, as for
285    example, might be used to set the value of a shape parameter.
286
287    These values are set by :func:`make_parameter_table` and
288    :func:`parse_parameter` therein.
289    """
290    def __init__(self, name, units='', default=None, limits=(-np.inf, np.inf),
291                 ptype='', description=''):
292        # type: (str, str, float, Limits, str, str) -> None
293        self.id = name.split('[')[0].strip() # type: str
294        self.name = name                     # type: str
295        self.units = units                   # type: str
296        self.default = default               # type: float
297        self.limits = limits                 # type: Limits
298        self.type = ptype                    # type: str
299        self.description = description       # type: str
300
301        # Length and length_control will be filled in once the complete
302        # parameter table is available.
303        self.length = 1                      # type: int
304        self.length_control = None           # type: Optional[str]
305        self.is_control = False              # type: bool
306
307        # TODO: need better control over whether a parameter is polydisperse
308        self.polydisperse = False            # type: bool
309        self.relative_pd = False             # type: bool
310
311        # choices are also set externally.
312        self.choices = []                    # type: List[str]
313
314    def as_definition(self):
315        # type: () -> str
316        """
317        Declare space for the variable in a parameter structure.
318
319        For example, the parameter thickness with length 3 will
320        return "double thickness[3];", with no spaces before and
321        no new line character afterward.
322        """
323        if self.length == 1:
324            return "double %s;"%self.id
325        else:
326            return "double %s[%d];"%(self.id, self.length)
327
328    def as_function_argument(self):
329        # type: () -> str
330        r"""
331        Declare the variable as a function argument.
332
333        For example, the parameter thickness with length 3 will
334        return "double \*thickness", with no spaces before and
335        no comma afterward.
336        """
337        if self.length == 1:
338            return "double %s"%self.id
339        else:
340            return "double *%s"%self.id
341
342    def as_call_reference(self, prefix=""):
343        # type: (str) -> str
344        """
345        Return *prefix* + parameter name.  For struct references, use "v."
346        as the prefix.
347        """
348        # Note: if the parameter is a struct type, then we will need to use
349        # &prefix+id.  For scalars and vectors we can just use prefix+id.
350        return prefix + self.id
351
352    def __str__(self):
353        # type: () -> str
354        return "<%s>"%self.name
355
356    def __repr__(self):
357        # type: () -> str
358        return "P<%s>"%self.name
359
360
361class ParameterTable(object):
362    """
363    ParameterTable manages the list of available parameters.
364
365    There are a couple of complications which mean that the list of parameters
366    for the kernel differs from the list of parameters that the user sees.
367
368    (1) Common parameters.  Scale and background are implicit to every model,
369    but are not passed to the kernel.
370
371    (2) Vector parameters.  Vector parameters are passed to the kernel as a
372    pointer to an array, e.g., thick[], but they are seen by the user as n
373    separate parameters thick1, thick2, ...
374
375    Therefore, the parameter table is organized by how it is expected to be
376    used. The following information is needed to set up the kernel functions:
377
378    * *kernel_parameters* is the list of parameters in the kernel parameter
379      table, with vector parameter p declared as p[].
380
381    * *iq_parameters* is the list of parameters to the Iq(q, ...) function,
382      with vector parameter p sent as p[].
383
384    * *iqxy_parameters* is the list of parameters to the Iqxy(qx, qy, ...)
385      function, with vector parameter p sent as p[].
386
387    * *form_volume_parameters* is the list of parameters to the form_volume(...)
388      function, with vector parameter p sent as p[].
389
390    Problem details, which sets up the polydispersity loops, requires the
391    following:
392
393    * *theta_offset* is the offset of the theta parameter in the kernel parameter
394      table, with vector parameters counted as n individual parameters
395      p1, p2, ..., or offset is -1 if there is no theta parameter.
396
397    * *max_pd* is the maximum number of polydisperse parameters, with vector
398      parameters counted as n individual parameters p1, p2, ...  Note that
399      this number is limited to sasmodels.modelinfo.MAX_PD.
400
401    * *npars* is the total number of parameters to the kernel, with vector
402      parameters counted as n individual parameters p1, p2, ...
403
404    * *call_parameters* is the complete list of parameters to the kernel,
405      including scale and background, with vector parameters recorded as
406      individual parameters p1, p2, ...
407
408    * *active_1d* is the set of names that may be polydisperse for 1d data
409
410    * *active_2d* is the set of names that may be polydisperse for 2d data
411
412    User parameters are the set of parameters visible to the user, including
413    the scale and background parameters that the kernel does not see.  User
414    parameters don't use vector notation, and instead use p1, p2, ...
415    """
416    # scale and background are implicit parameters
417    COMMON = [Parameter(*p) for p in COMMON_PARAMETERS]
418
419    def __init__(self, parameters):
420        # type: (List[Parameter]) -> None
421        self.kernel_parameters = parameters
422        self._set_vector_lengths()
423
424        self.npars = sum(p.length for p in self.kernel_parameters)
425        self.nmagnetic = sum(p.length for p in self.kernel_parameters
426                             if p.type == 'sld')
427        self.nvalues = 2 + self.npars
428        if self.nmagnetic:
429            self.nvalues += 3 + 3*self.nmagnetic
430
431        self.call_parameters = self._get_call_parameters()
432        self.defaults = self._get_defaults()
433        #self._name_table= dict((p.id, p) for p in parameters)
434
435        # Set the kernel parameters.  Assumes background and scale are the
436        # first two parameters in the parameter list, but these are not sent
437        # to the underlying kernel functions.
438        self.iq_parameters = [p for p in self.kernel_parameters
439                              if p.type not in ('orientation', 'magnetic')]
440        self.iqxy_parameters = [p for p in self.kernel_parameters
441                                if p.type != 'magnetic']
442        self.form_volume_parameters = [p for p in self.kernel_parameters
443                                       if p.type == 'volume']
444
445        # Theta offset
446        offset = 0
447        for p in self.kernel_parameters:
448            if p.name == 'theta':
449                self.theta_offset = offset
450                break
451            offset += p.length
452        else:
453            self.theta_offset = -1
454
455        # number of polydisperse parameters
456        num_pd = sum(p.length for p in self.kernel_parameters if p.polydisperse)
457        # Don't use more polydisperse parameters than are available in the model
458        self.max_pd = min(num_pd, MAX_PD)
459
460        # true if has 2D parameters
461        self.has_2d = any(p.type in ('orientation', 'magnetic')
462                          for p in self.kernel_parameters)
463        self.magnetism_index = [k for k, p in enumerate(self.call_parameters)
464                                if p.id.startswith('M0:')]
465
466        self.pd_1d = set(p.name for p in self.call_parameters
467                         if p.polydisperse and p.type not in ('orientation', 'magnetic'))
468        self.pd_2d = set(p.name for p in self.call_parameters if p.polydisperse)
469
470    def _set_vector_lengths(self):
471        # type: () -> List[str]
472        """
473        Walk the list of kernel parameters, setting the length field of the
474        vector parameters from the upper limit of the reference parameter.
475
476        This needs to be done once the entire parameter table is available
477        since the reference may still be undefined when the parameter is
478        initially created.
479
480        Returns the list of control parameter names.
481
482        Note: This modifies the underlying parameter object.
483        """
484        # Sort out the length of the vector parameters such as thickness[n]
485
486        for p in self.kernel_parameters:
487            if p.length_control:
488                for ref in self.kernel_parameters:
489                    if ref.id == p.length_control:
490                        break
491                else:
492                    raise ValueError("no reference variable %r for %s"
493                                     % (p.length_control, p.name))
494                ref.is_control = True
495                ref.polydisperse = False
496                low, high = ref.limits
497                if int(low) != low or int(high) != high or low < 0 or high > 20:
498                    raise ValueError("expected limits on %s to be within [0, 20]"
499                                     % ref.name)
500                p.length = int(high)
501
502    def _get_defaults(self):
503        # type: () -> ParameterSet
504        """
505        Get a list of parameter defaults from the parameters.
506
507        Expands vector parameters into parameter id+number.
508        """
509        # Construct default values, including vector defaults
510        defaults = {}
511        for p in self.call_parameters:
512            if p.length == 1:
513                defaults[p.id] = p.default
514            else:
515                for k in range(1, p.length+1):
516                    defaults["%s%d"%(p.id, k)] = p.default
517        return defaults
518
519    def _get_call_parameters(self):
520        # type: () -> List[Parameter]
521        full_list = self.COMMON[:]
522        for p in self.kernel_parameters:
523            if p.length == 1:
524                full_list.append(p)
525            else:
526                for k in range(1, p.length+1):
527                    pk = Parameter(p.id+str(k), p.units, p.default,
528                                   p.limits, p.type, p.description)
529                    pk.polydisperse = p.polydisperse
530                    pk.relative_pd = p.relative_pd
531                    pk.choices = p.choices
532                    full_list.append(pk)
533
534        # Add the magnetic parameters to the end of the call parameter list.
535        if self.nmagnetic > 0:
536            full_list.extend([
537                Parameter('up:frac_i', '', 0., [0., 1.],
538                          'magnetic', 'fraction of spin up incident'),
539                Parameter('up:frac_f', '', 0., [0., 1.],
540                          'magnetic', 'fraction of spin up final'),
541                Parameter('up:angle', 'degress', 0., [0., 360.],
542                          'magnetic', 'spin up angle'),
543            ])
544            slds = [p for p in full_list if p.type == 'sld']
545            for p in slds:
546                full_list.extend([
547                    Parameter('M0:'+p.id, '1e-6/Ang^2', 0., [-np.inf, np.inf],
548                              'magnetic', 'magnetic amplitude for '+p.description),
549                    Parameter('mtheta:'+p.id, 'degrees', 0., [-90., 90.],
550                              'magnetic', 'magnetic latitude for '+p.description),
551                    Parameter('mphi:'+p.id, 'degrees', 0., [-180., 180.],
552                              'magnetic', 'magnetic longitude for '+p.description),
553                ])
554        #print("call parameters", full_list)
555        return full_list
556
557    def user_parameters(self, pars, is2d=True):
558        # type: (Dict[str, float], bool) -> List[Parameter]
559        """
560        Return the list of parameters for the given data type.
561
562        Vector parameters are expanded in place.  If multiple parameters
563        share the same vector length, then the parameters will be interleaved
564        in the result.  The control parameters come first.  For example,
565        if the parameter table is ordered as::
566
567            sld_core
568            sld_shell[num_shells]
569            sld_solvent
570            thickness[num_shells]
571            num_shells
572
573        and *pars[num_shells]=2* then the returned list will be::
574
575            num_shells
576            scale
577            background
578            sld_core
579            sld_shell1
580            thickness1
581            sld_shell2
582            thickness2
583            sld_solvent
584
585        Note that shell/thickness pairs are grouped together in the result
586        even though they were not grouped in the incoming table.  The control
587        parameter is always returned first since the GUI will want to set it
588        early, and rerender the table when it is changed.
589
590        Parameters marked as sld will automatically have a set of associated
591        magnetic parameters (m0:p, mtheta:p, mphi:p), as well as polarization
592        information (up:theta, up:frac_i, up:frac_f).
593        """
594        # control parameters go first
595        control = [p for p in self.kernel_parameters if p.is_control]
596
597        # Gather entries such as name[n] into groups of the same n
598        dependent = {} # type: Dict[str, List[Parameter]]
599        dependent.update((p.id, []) for p in control)
600        for p in self.kernel_parameters:
601            if p.length_control is not None:
602                dependent[p.length_control].append(p)
603
604        # Gather entries such as name[4] into groups of the same length
605        fixed_length = {}  # type: Dict[int, List[Parameter]]
606        for p in self.kernel_parameters:
607            if p.length > 1 and p.length_control is None:
608                fixed_length.setdefault(p.length, []).append(p)
609
610        # Using the call_parameters table, we already have expanded forms
611        # for each of the vector parameters; put them in a lookup table
612        # Note: p.id and p.name are currently identical for the call parameters
613        expanded_pars = dict((p.id, p) for p in self.call_parameters)
614
615        def append_group(name):
616            """add the named parameter, and related magnetic parameters if any"""
617            result.append(expanded_pars[name])
618            if is2d:
619                for tag in 'M0:', 'mtheta:', 'mphi:':
620                    if tag+name in expanded_pars:
621                        result.append(expanded_pars[tag+name])
622
623        # Gather the user parameters in order
624        result = control + self.COMMON
625        for p in self.kernel_parameters:
626            if not is2d and p.type in ('orientation', 'magnetic'):
627                pass
628            elif p.is_control:
629                pass # already added
630            elif p.length_control is not None:
631                table = dependent.get(p.length_control, [])
632                if table:
633                    # look up length from incoming parameters
634                    table_length = int(pars.get(p.length_control, p.length))
635                    del dependent[p.length_control] # first entry seen
636                    for k in range(1, table_length+1):
637                        for entry in table:
638                            append_group(entry.id+str(k))
639                else:
640                    pass # already processed all entries
641            elif p.length > 1:
642                table = fixed_length.get(p.length, [])
643                if table:
644                    table_length = p.length
645                    del fixed_length[p.length]
646                    for k in range(1, table_length+1):
647                        for entry in table:
648                            append_group(entry.id+str(k))
649                else:
650                    pass # already processed all entries
651            else:
652                append_group(p.id)
653
654        if is2d and 'up:angle' in expanded_pars:
655            result.extend([
656                expanded_pars['up:frac_i'],
657                expanded_pars['up:frac_f'],
658                expanded_pars['up:angle'],
659            ])
660
661        return result
662
663def isstr(x):
664    # type: (Any) -> bool
665    """
666    Return True if the object is a string.
667    """
668    # TODO: 2-3 compatible tests for str, including unicode strings
669    return isinstance(x, str)
670
671
672def _find_source_lines(model_info, kernel_module):
673    """
674    Identify the location of the C source inside the model definition file.
675
676    This code runs through the source of the kernel module looking for
677    lines that start with 'Iq', 'Iqxy' or 'form_volume'.  Clearly there are
678    all sorts of reasons why this might not work (e.g., code commented out
679    in a triple-quoted line block, code built using string concatenation,
680    or code defined in the branch of an 'if' block), but it should work
681    properly in the 95% case, and getting the incorrect line number will
682    be harmless.
683    """
684    # Check if we need line numbers at all
685    if callable(model_info.Iq):
686        return None
687
688    if (model_info.Iq is None
689            and model_info.Iqxy is None
690            and model_info.Imagnetic is None
691            and model_info.form_volume is None):
692        return
693
694    # find the defintion lines for the different code blocks
695    try:
696        source = inspect.getsource(kernel_module)
697    except IOError:
698        return
699    for k, v in enumerate(source.split('\n')):
700        if v.startswith('Imagnetic'):
701            model_info._Imagnetic_line = k+1
702        elif v.startswith('Iqxy'):
703            model_info._Iqxy_line = k+1
704        elif v.startswith('Iq'):
705            model_info._Iq_line = k+1
706        elif v.startswith('form_volume'):
707            model_info._form_volume_line = k+1
708
709
710def make_model_info(kernel_module):
711    # type: (module) -> ModelInfo
712    """
713    Extract the model definition from the loaded kernel module.
714
715    Fill in default values for parts of the module that are not provided.
716
717    Note: vectorized Iq and Iqxy functions will be created for python
718    models when the model is first called, not when the model is loaded.
719    """
720    info = ModelInfo()
721    #print("make parameter table", kernel_module.parameters)
722    parameters = make_parameter_table(getattr(kernel_module, 'parameters', []))
723    demo = expand_pars(parameters, getattr(kernel_module, 'demo', None))
724    filename = abspath(kernel_module.__file__).replace('.pyc', '.py')
725    kernel_id = splitext(basename(filename))[0]
726    name = getattr(kernel_module, 'name', None)
727    if name is None:
728        name = " ".join(w.capitalize() for w in kernel_id.split('_'))
729
730    info.id = kernel_id  # string used to load the kernel
731    info.filename = filename
732    info.name = name
733    info.title = getattr(kernel_module, 'title', name+" model")
734    info.description = getattr(kernel_module, 'description', 'no description')
735    info.parameters = parameters
736    info.demo = demo
737    info.composition = None
738    info.docs = kernel_module.__doc__
739    info.category = getattr(kernel_module, 'category', None)
740    info.structure_factor = getattr(kernel_module, 'structure_factor', False)
741    info.profile_axes = getattr(kernel_module, 'profile_axes', ['x', 'y'])
742    info.source = getattr(kernel_module, 'source', [])
743    # TODO: check the structure of the tests
744    info.tests = getattr(kernel_module, 'tests', [])
745    info.ER = getattr(kernel_module, 'ER', None) # type: ignore
746    info.VR = getattr(kernel_module, 'VR', None) # type: ignore
747    info.form_volume = getattr(kernel_module, 'form_volume', None) # type: ignore
748    info.Iq = getattr(kernel_module, 'Iq', None) # type: ignore
749    info.Iqxy = getattr(kernel_module, 'Iqxy', None) # type: ignore
750    info.Imagnetic = getattr(kernel_module, 'Imagnetic', None) # type: ignore
751    info.profile = getattr(kernel_module, 'profile', None) # type: ignore
752    info.sesans = getattr(kernel_module, 'sesans', None) # type: ignore
753    # Default single and opencl to True for C models.  Python models have callable Iq.
754    info.opencl = getattr(kernel_module, 'opencl', not callable(info.Iq))
755    info.single = getattr(kernel_module, 'single', not callable(info.Iq))
756
757    # multiplicity info
758    control_pars = [p.id for p in parameters.kernel_parameters if p.is_control]
759    default_control = control_pars[0] if control_pars else None
760    info.control = getattr(kernel_module, 'control', default_control)
761    info.hidden = getattr(kernel_module, 'hidden', None) # type: ignore
762
763    _find_source_lines(info, kernel_module)
764
765    return info
766
767class ModelInfo(object):
768    """
769    Interpret the model definition file, categorizing the parameters.
770
771    The module can be loaded with a normal python import statement if you
772    know which module you need, or with __import__('sasmodels.model.'+name)
773    if the name is in a string.
774
775    The structure should be mostly static, other than the delayed definition
776    of *Iq* and *Iqxy* if they need to be defined.
777    """
778    #: Full path to the file defining the kernel, if any.
779    filename = None         # type: Optional[str]
780    #: Id of the kernel used to load it from the filesystem.
781    id = None               # type: str
782    #: Display name of the model, which defaults to the model id but with
783    #: capitalization of the parts so for example core_shell defaults to
784    #: "Core Shell".
785    name = None             # type: str
786    #: Short description of the model.
787    title = None            # type: str
788    #: Long description of the model.
789    description = None      # type: str
790    #: Model parameter table. Parameters are defined using a list of parameter
791    #: definitions, each of which is contains parameter name, units,
792    #: default value, limits, type and description.  See :class:`Parameter`
793    #: for details on the individual parameters.  The parameters are gathered
794    #: into a :class:`ParameterTable`, which provides various views into the
795    #: parameter list.
796    parameters = None       # type: ParameterTable
797    #: Demo parameters as a *parameter:value* map used as the default values
798    #: for :mod:`compare`.  Any parameters not set in *demo* will use the
799    #: defaults from the parameter table.  That means no polydispersity, and
800    #: in the case of multiplicity models, a minimal model with no interesting
801    #: scattering.
802    demo = None             # type: Dict[str, float]
803    #: Composition is None if this is an independent model, or it is a
804    #: tuple with comoposition type ('product' or 'misture') and a list of
805    #: :class:`ModelInfo` blocks for the composed objects.  This allows us
806    #: to rebuild a complete mixture or product model from the info block.
807    #: *composition* is not given in the model definition file, but instead
808    #: arises when the model is constructed using names such as
809    #: *sphere*hardsphere* or *cylinder+sphere*.
810    composition = None      # type: Optional[Tuple[str, List[ModelInfo]]]
811    #: Name of the control parameter for a variant model such as :ref:`rpa`.
812    #: The *control* parameter should appear in the parameter table, with
813    #: limits defined as *[CASES]*, for case names such as
814    #: *CASES = ["diblock copolymer", "triblock copolymer", ...]*.
815    #: This should give *limits=[[case1, case2, ...]]*, but the
816    #: model loader translates this to *limits=[0, len(CASES)-1]*, and adds
817    #: *choices=CASES* to the :class:`Parameter` definition. Note that
818    #: models can use a list of cases as a parameter without it being a
819    #: control parameter.  Either way, the parameter is sent to the model
820    #: evaluator as *float(choice_num)*, where choices are numbered from 0.
821    #: See also :attr:`hidden`.
822    control = None          # type: str
823    #: Different variants require different parameters.  In order to show
824    #: just the parameters needed for the variant selected by :attr:`control`,
825    #: you should provide a function *hidden(control) -> set(['a', 'b', ...])*
826    #: indicating which parameters need to be hidden.  For multiplicity
827    #: models, you need to use the complete name of the parameter, including
828    #: its number.  So for example, if variant "a" uses only *sld1* and *sld2*,
829    #: then *sld3*, *sld4* and *sld5* of multiplicity parameter *sld[5]*
830    #: should be in the hidden set.
831    hidden = None           # type: Optional[Callable[[int], Set[str]]]
832    #: Doc string from the top of the model file.  This should be formatted
833    #: using ReStructuredText format, with latex markup in ".. math"
834    #: environments, or in dollar signs.  This will be automatically
835    #: extracted to a .rst file by :func:`generate.make_docs`, then
836    #: converted to HTML or PDF by Sphinx.
837    docs = None             # type: str
838    #: Location of the model description in the documentation.  This takes the
839    #: form of "section" or "section:subsection".  So for example,
840    #: :ref:`porod` uses *category="shape-independent"* so it is in the
841    #: :ref:`shape-independent` section whereas
842    #: :ref:`capped-cylinder` uses: *category="shape:cylinder"*, which puts
843    #: it in the :ref:`shape-cylinder` section.
844    category = None         # type: Optional[str]
845    #: True if the model can be computed accurately with single precision.
846    #: This is True by default, but models such as :ref:`bcc-paracrystal` set
847    #: it to False because they require double precision calculations.
848    single = None           # type: bool
849    #: True if the model can be run as an opencl model.  If for some reason
850    #: the model cannot be run in opencl (e.g., because the model passes
851    #: functions by reference), then set this to false.
852    opencl = None           # type: bool
853    #: True if the model is a structure factor used to model the interaction
854    #: between form factor models.  This will default to False if it is not
855    #: provided in the file.
856    structure_factor = None # type: bool
857    #: List of C source files used to define the model.  The source files
858    #: should define the *Iq* function, and possibly *Iqxy*, though a default
859    #: *Iqxy = Iq(sqrt(qx**2+qy**2)* will be created if no *Iqxy* is provided.
860    #: Files containing the most basic functions must appear first in the list,
861    #: followed by the files that use those functions.  Form factors are
862    #: indicated by providing a :attr:`ER` function.
863    source = None           # type: List[str]
864    #: The set of tests that must pass.  The format of the tests is described
865    #: in :mod:`model_test`.
866    tests = None            # type: List[TestCondition]
867    #: Returns the effective radius of the model given its volume parameters.
868    #: The presence of *ER* indicates that the model is a form factor model
869    #: that may be used together with a structure factor to form an implicit
870    #: multiplication model.
871    #:
872    #: The parameters to the *ER* function must be marked with type *volume*.
873    #: in the parameter table.  They will appear in the same order as they
874    #: do in the table.  The values passed to *ER* will be vectors, with one
875    #: value for each polydispersity condition.  For example, if the model
876    #: is polydisperse over both length and radius, then both length and
877    #: radius will have the same number of values in the vector, with one
878    #: value for each *length X radius*.  If only *radius* is polydisperse,
879    #: then the value for *length* will be repeated once for each value of
880    #: *radius*.  The *ER* function should return one effective radius for
881    #: each parameter set.  Multiplicity parameters will be received as
882    #: arrays, with one row per polydispersity condition.
883    ER = None               # type: Optional[Callable[[np.ndarray], np.ndarray]]
884    #: Returns the occupied volume and the total volume for each parameter set.
885    #: See :attr:`ER` for details on the parameters.
886    VR = None               # type: Optional[Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]]]
887    #: Returns the form volume for python-based models.  Form volume is needed
888    #: for volume normalization in the polydispersity integral.  If no
889    #: parameters are *volume* parameters, then form volume is not needed.
890    #: For C-based models, (with :attr:`sources` defined, or with :attr:`Iq`
891    #: defined using a string containing C code), form_volume must also be
892    #: C code, either defined as a string, or in the sources.
893    form_volume = None      # type: Union[None, str, Callable[[np.ndarray], float]]
894    #: Returns *I(q, a, b, ...)* for parameters *a*, *b*, etc. defined
895    #: by the parameter table.  *Iq* can be defined as a python function, or
896    #: as a C function.  If it is defined in C, then set *Iq* to the body of
897    #: the C function, including the return statement.  This function takes
898    #: values for *q* and each of the parameters as separate *double* values
899    #: (which may be converted to float or long double by sasmodels).  All
900    #: source code files listed in :attr:`sources` will be loaded before the
901    #: *Iq* function is defined.  If *Iq* is not present, then sources should
902    #: define *static double Iq(double q, double a, double b, ...)* which
903    #: will return *I(q, a, b, ...)*.  Multiplicity parameters are sent as
904    #: pointers to doubles.  Constants in floating point expressions should
905    #: include the decimal point. See :mod:`generate` for more details.
906    Iq = None               # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
907    #: Returns *I(qx, qy, a, b, ...)*.  The interface follows :attr:`Iq`.
908    Iqxy = None             # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
909    #: Returns *I(qx, qy, a, b, ...)*.  The interface follows :attr:`Iq`.
910    Imagnetic = None        # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
911    #: Returns a model profile curve *x, y*.  If *profile* is defined, this
912    #: curve will appear in response to the *Show* button in SasView.  Use
913    #: :attr:`profile_axes` to set the axis labels.  Note that *y* values
914    #: will be scaled by 1e6 before plotting.
915    profile = None          # type: Optional[Callable[[np.ndarray], None]]
916    #: Axis labels for the :attr:`profile` plot.  The default is *['x', 'y']*.
917    #: Only the *x* component is used for now.
918    profile_axes = None     # type: Tuple[str, str]
919    #: Returns *sesans(z, a, b, ...)* for models which can directly compute
920    #: the SESANS correlation function.  Note: not currently implemented.
921    sesans = None           # type: Optional[Callable[[np.ndarray], np.ndarray]]
922
923    # line numbers within the python file for bits of C source, if defined
924    # NB: some compilers fail with a "#line 0" directive, so default to 1.
925    _Imagnetic_line = 1
926    _Iqxy_line = 1
927    _Iq_line = 1
928    _form_volume_line = 1
929
930
931    def __init__(self):
932        # type: () -> None
933        pass
934
935    def get_hidden_parameters(self, control):
936        """
937        Returns the set of hidden parameters for the model.  *control* is the
938        value of the control parameter.  Note that multiplicity models have
939        an implicit control parameter, which is the parameter that controls
940        the multiplicity.
941        """
942        if self.hidden is not None:
943            hidden = self.hidden(control)
944        else:
945            controls = [p for p in self.parameters.kernel_parameters
946                        if p.is_control]
947            if len(controls) != 1:
948                raise ValueError("more than one control parameter")
949            hidden = set(p.id+str(k)
950                         for p in self.parameters.kernel_parameters
951                         for k in range(control+1, p.length+1)
952                         if p.length > 1)
953        return hidden
Note: See TracBrowser for help on using the repository browser.