source: sasmodels/sasmodels/modelinfo.py @ 1e420e6

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 1e420e6 was 1e420e6, checked in by Paul Kienzle <pkienzle@…>, 6 years ago

improve safety check when setting background to 0.0 for structure factors

  • Property mode set to 100644
File size: 45.9 KB
Line 
1"""
2Model Info and Parameter Tables
3===============================
4
5Defines :class:`ModelInfo` and :class:`ParameterTable` and the routines for
6manipulating them.  In particular, :func:`make_model_info` converts a kernel
7module into the model info block as seen by the rest of the sasmodels library.
8"""
9from __future__ import print_function
10
11from copy import copy
12from os.path import abspath, basename, splitext
13import inspect
14
15import numpy as np  # type: ignore
16
17# Optional typing
18# pylint: disable=unused-import
19try:
20    from typing import Tuple, List, Union, Dict, Optional, Any, Callable, Sequence, Set
21    from types import ModuleType
22except ImportError:
23    pass
24else:
25    Limits = Tuple[float, float]
26    #LimitsOrChoice = Union[Limits, Tuple[Sequence[str]]]
27    ParameterDef = Tuple[str, str, float, Limits, str, str]
28    ParameterSetUser = Dict[str, Union[float, List[float]]]
29    ParameterSet = Dict[str, float]
30    TestInput = Union[str, float, List[float], Tuple[float, float], List[Tuple[float, float]]]
31    TestValue = Union[float, List[float]]
32    TestCondition = Tuple[ParameterSetUser, TestInput, TestValue]
33# pylint: enable=unused-import
34
35# If MAX_PD changes, need to change the loop macros in kernel_iq.c
36MAX_PD = 5 #: Maximum number of simultaneously polydisperse parameters
37
38# assumptions about common parameters exist throughout the code, such as:
39# (1) kernel functions Iq, Iqxy, Iqac, Iqabc, form_volume, ... don't see them
40# (2) kernel drivers assume scale is par[0] and background is par[1]
41# (3) mixture models drop the background on components and replace the scale
42#     with a scale that varies from [-inf, inf]
43# (4) product models drop the background and reassign scale
44# and maybe other places.
45# Note that scale and background cannot be coordinated parameters whose value
46# depends on the some polydisperse parameter with the current implementation
47DEFAULT_BACKGROUND = 1e-3
48COMMON_PARAMETERS = [
49    ("scale", "", 1, (0.0, np.inf), "", "Source intensity"),
50    ("background", "1/cm", DEFAULT_BACKGROUND, (-np.inf, np.inf), "", "Source background"),
51]
52assert (len(COMMON_PARAMETERS) == 2
53        and COMMON_PARAMETERS[0][0] == "scale"
54        and COMMON_PARAMETERS[1][0] == "background"), "don't change common parameters"
55
56
57def make_parameter_table(pars):
58    # type: (List[ParameterDef]) -> ParameterTable
59    """
60    Construct a parameter table from a list of parameter definitions.
61
62    This is used by the module processor to convert the parameter block into
63    the parameter table seen in the :class:`ModelInfo` for the module.
64    """
65    processed = []
66    for p in pars:
67        if not isinstance(p, (list, tuple)) or len(p) != 6:
68            raise ValueError("Parameter should be [name, units, default, limits, type, desc], but got %r"
69                             %str(p))
70        processed.append(parse_parameter(*p))
71    partable = ParameterTable(processed)
72    partable.check_angles()
73    return partable
74
75def parse_parameter(name, units='', default=np.NaN,
76                    user_limits=None, ptype='', description=''):
77    # type: (str, str, float, Sequence[Any], str, str) -> Parameter
78    """
79    Parse an individual parameter from the parameter definition block.
80
81    This does type and value checking on the definition, leading
82    to early failure in the model loading process and easier debugging.
83    """
84    # Parameter is a user facing class.  Do robust type checking.
85    if not isstr(name):
86        raise ValueError("expected string for parameter name %r"%name)
87    if not isstr(units):
88        raise ValueError("expected units to be a string for %s"%name)
89
90    # Process limits as [float, float] or [[str, str, ...]]
91    choices = []  # type: List[str]
92    if user_limits is None:
93        limits = (-np.inf, np.inf)
94    elif not isinstance(user_limits, (tuple, list)):
95        raise ValueError("invalid limits for %s"%name)
96    else:
97        # if limits is [[str,...]], then this is a choice list field,
98        # and limits are 1 to length of string list
99        if isinstance(user_limits[0], (tuple, list)):
100            choices = user_limits[0]
101            limits = (0., len(choices)-1.)
102            if not all(isstr(k) for k in choices):
103                raise ValueError("choices must be strings for %s"%name)
104        else:
105            try:
106                low, high = user_limits
107                limits = (float(low), float(high))
108            except Exception:
109                raise ValueError("invalid limits for %s: %r"%(name, user_limits))
110            if low >= high:
111                raise ValueError("require lower limit < upper limit")
112
113    # Process default value as float, making sure it is in range
114    if not isinstance(default, (int, float)):
115        raise ValueError("expected default %r to be a number for %s"
116                         % (default, name))
117    if default < limits[0] or default > limits[1]:
118        raise ValueError("default value %r not in range for %s"
119                         % (default, name))
120
121    # Check for valid parameter type
122    if ptype not in ("volume", "orientation", "sld", "magnetic", ""):
123        raise ValueError("unexpected type %r for %s" % (ptype, name))
124
125    # Check for valid parameter description
126    if not isstr(description):
127        raise ValueError("expected description to be a string")
128
129    # Parameter id for name[n] does not include [n]
130    if "[" in name:
131        if not name.endswith(']'):
132            raise ValueError("Expected name[len] for vector parameter %s"%name)
133        pid, ref = name[:-1].split('[', 1)
134        ref = ref.strip()
135    else:
136        pid, ref = name, None
137
138    # automatically identify sld types
139    if ptype == '' and (pid.startswith('sld') or pid.endswith('sld')):
140        ptype = 'sld'
141
142    # Check if using a vector definition, name[k], as the parameter name
143    if ref:
144        if ref == '':
145            raise ValueError("Need to specify vector length for %s"%name)
146        try:
147            length = int(ref)
148            control = None
149        except ValueError:
150            length = None
151            control = ref
152    else:
153        length = 1
154        control = None
155
156    # Build the parameter
157    parameter = Parameter(name=name, units=units, default=default,
158                          limits=limits, ptype=ptype, description=description)
159
160    # TODO: need better control over whether a parameter is polydisperse
161    parameter.polydisperse = ptype in ('orientation', 'volume')
162    parameter.relative_pd = ptype == 'volume'
163    parameter.choices = choices
164    parameter.length = length
165    parameter.length_control = control
166
167    return parameter
168
169
170def expand_pars(partable, pars):
171    # type: (ParameterTable, ParameterSetUser) ->  ParameterSet
172    """
173    Create demo parameter set from key-value pairs.
174
175    *pars* are the key-value pairs to use for the parameters.  Any
176    parameters not specified in *pars* are set from the *partable* defaults.
177
178    If *pars* references vector fields, such as thickness[n], then support
179    different ways of assigning the demo values, including assigning a
180    specific value (e.g., thickness3=50.0), assigning a new value to all
181    (e.g., thickness=50.0) or assigning values using list notation.
182    """
183    if pars is None:
184        result = partable.defaults
185    else:
186        lookup = dict((p.id, p) for p in partable.kernel_parameters)
187        result = partable.defaults.copy()
188        scalars = dict((name, value) for name, value in pars.items()
189                       if name not in lookup or lookup[name].length == 1)
190        vectors = dict((name, value) for name, value in pars.items()
191                       if name in lookup and lookup[name].length > 1)
192        #print("lookup", lookup)
193        #print("scalars", scalars)
194        #print("vectors", vectors)
195        if vectors:
196            for name, value in vectors.items():
197                if np.isscalar(value):
198                    # support for the form
199                    #    dict(thickness=0, thickness2=50)
200                    for k in range(1, lookup[name].length+1):
201                        key = name+str(k)
202                        if key not in scalars:
203                            scalars[key] = value
204                else:
205                    # supoprt for the form
206                    #    dict(thickness=[20,10,3])
207                    for (k, v) in enumerate(value):
208                        scalars[name+str(k+1)] = v
209        result.update(scalars)
210        #print("expanded", result)
211
212    return result
213
214def prefix_parameter(par, prefix):
215    # type: (Parameter, str) -> Parameter
216    """
217    Return a copy of the parameter with its name prefixed.
218    """
219    new_par = copy(par)
220    new_par.name = prefix + par.name
221    new_par.id = prefix + par.id
222
223def suffix_parameter(par, suffix):
224    # type: (Parameter, str) -> Parameter
225    """
226    Return a copy of the parameter with its name prefixed.
227    """
228    new_par = copy(par)
229    # If name has the form x[n], replace with x_suffix[n]
230    new_par.name = par.id + suffix + par.name[len(par.id):]
231    new_par.id = par.id + suffix
232
233class Parameter(object):
234    """
235    The available kernel parameters are defined as a list, with each parameter
236    defined as a sublist with the following elements:
237
238    *name* is the name that will be displayed to the user.  Names
239    should be lower case, with words separated by underscore.  If
240    acronyms are used, the whole acronym should be upper case. For vector
241    parameters, the name will be followed by *[len]* where *len* is an
242    integer length of the vector, or the name of the parameter which
243    controls the length.  The attribute *id* will be created from name
244    without the length.
245
246    *units* should be one of *degrees* for angles, *Ang* for lengths,
247    *1e-6/Ang^2* for SLDs.
248
249    *default value* will be the initial value for  the model when it
250    is selected, or when an initial value is not otherwise specified.
251
252    *limits = [lb, ub]* are the hard limits on the parameter value, used to
253    limit the polydispersity density function.  In the fit, the parameter limits
254    given to the fit are the limits  on the central value of the parameter.
255    If there is polydispersity, it will evaluate parameter values outside
256    the fit limits, but not outside the hard limits specified in the model.
257    If there are no limits, use +/-inf imported from numpy.
258
259    *type* indicates how the parameter will be used.  "volume" parameters
260    will be used in all functions.  "orientation" parameters are not passed,
261    but will be used to convert from *qx*, *qy* to *qa*, *qb*, *qc* in calls to
262    *Iqxy* and *Imagnetic*.  If *type* is the empty string, the parameter will
263    be used in all of *Iq*, *Iqxy* and *Imagnetic*.  "sld" parameters
264    can automatically be promoted to magnetic parameters, each of which
265    will have a magnitude and a direction, which may be different from
266    other sld parameters. The volume parameters are used for calls
267    to form_volume within the kernel (required for volume normalization)
268    and for calls to ER and VR for effective radius and volume ratio
269    respectively.
270
271    *description* is a short description of the parameter.  This will
272    be displayed in the parameter table and used as a tool tip for the
273    parameter value in the user interface.
274
275    Additional values can be set after the parameter is created:
276
277    * *length* is the length of the field if it is a vector field
278
279    * *length_control* is the parameter which sets the vector length
280
281    * *is_control* is True if the parameter is a control parameter for a vector
282
283    * *polydisperse* is true if the parameter accepts a polydispersity
284
285    * *relative_pd* is true if that polydispersity is a portion of the
286      value (so a 10% length dipsersity would use a polydispersity value
287      of 0.1) rather than absolute dispersisity (such as an angle plus or
288      minus 15 degrees).
289
290    *choices* is the option names for a drop down list of options, as for
291    example, might be used to set the value of a shape parameter.
292
293    These values are set by :func:`make_parameter_table` and
294    :func:`parse_parameter` therein.
295    """
296    def __init__(self, name, units='', default=None, limits=(-np.inf, np.inf),
297                 ptype='', description=''):
298        # type: (str, str, float, Limits, str, str) -> None
299        self.id = name.split('[')[0].strip() # type: str
300        self.name = name                     # type: str
301        self.units = units                   # type: str
302        self.default = default               # type: float
303        self.limits = limits                 # type: Limits
304        self.type = ptype                    # type: str
305        self.description = description       # type: str
306
307        # Length and length_control will be filled in once the complete
308        # parameter table is available.
309        self.length = 1                      # type: int
310        self.length_control = None           # type: Optional[str]
311        self.is_control = False              # type: bool
312
313        # TODO: need better control over whether a parameter is polydisperse
314        self.polydisperse = False            # type: bool
315        self.relative_pd = False             # type: bool
316
317        # choices are also set externally.
318        self.choices = []                    # type: List[str]
319
320    def as_definition(self):
321        # type: () -> str
322        """
323        Declare space for the variable in a parameter structure.
324
325        For example, the parameter thickness with length 3 will
326        return "double thickness[3];", with no spaces before and
327        no new line character afterward.
328        """
329        if self.length == 1:
330            return "double %s;"%self.id
331        else:
332            return "double %s[%d];"%(self.id, self.length)
333
334    def as_function_argument(self):
335        # type: () -> str
336        r"""
337        Declare the variable as a function argument.
338
339        For example, the parameter thickness with length 3 will
340        return "double \*thickness", with no spaces before and
341        no comma afterward.
342        """
343        if self.length == 1:
344            return "double %s"%self.id
345        else:
346            return "double *%s"%self.id
347
348    def as_call_reference(self, prefix=""):
349        # type: (str) -> str
350        """
351        Return *prefix* + parameter name.  For struct references, use "v."
352        as the prefix.
353        """
354        # Note: if the parameter is a struct type, then we will need to use
355        # &prefix+id.  For scalars and vectors we can just use prefix+id.
356        return prefix + self.id
357
358    def __str__(self):
359        # type: () -> str
360        return "<%s>"%self.name
361
362    def __repr__(self):
363        # type: () -> str
364        return "P<%s>"%self.name
365
366
367class ParameterTable(object):
368    """
369    ParameterTable manages the list of available parameters.
370
371    There are a couple of complications which mean that the list of parameters
372    for the kernel differs from the list of parameters that the user sees.
373
374    (1) Common parameters.  Scale and background are implicit to every model,
375    but are not passed to the kernel.
376
377    (2) Vector parameters.  Vector parameters are passed to the kernel as a
378    pointer to an array, e.g., thick[], but they are seen by the user as n
379    separate parameters thick1, thick2, ...
380
381    Therefore, the parameter table is organized by how it is expected to be
382    used. The following information is needed to set up the kernel functions:
383
384    * *kernel_parameters* is the list of parameters in the kernel parameter
385      table, with vector parameter p declared as p[].
386
387    * *iq_parameters* is the list of parameters to the Iq(q, ...) function,
388      with vector parameter p sent as p[].
389
390    * *form_volume_parameters* is the list of parameters to the form_volume(...)
391      function, with vector parameter p sent as p[].
392
393    Problem details, which sets up the polydispersity loops, requires the
394    following:
395
396    * *theta_offset* is the offset of the theta parameter in the kernel parameter
397      table, with vector parameters counted as n individual parameters
398      p1, p2, ..., or offset is -1 if there is no theta parameter.
399
400    * *max_pd* is the maximum number of polydisperse parameters, with vector
401      parameters counted as n individual parameters p1, p2, ...  Note that
402      this number is limited to sasmodels.modelinfo.MAX_PD.
403
404    * *npars* is the total number of parameters to the kernel, with vector
405      parameters counted as n individual parameters p1, p2, ...
406
407    * *common_parameters* is the list of common parameters, with a unique
408      copy for each model so that structure factors can have a default
409      background of 0.0.
410
411    * *call_parameters* is the complete list of parameters to the kernel,
412      including scale and background, with vector parameters recorded as
413      individual parameters p1, p2, ...
414
415    * *active_1d* is the set of names that may be polydisperse for 1d data
416
417    * *active_2d* is the set of names that may be polydisperse for 2d data
418
419    User parameters are the set of parameters visible to the user, including
420    the scale and background parameters that the kernel does not see.  User
421    parameters don't use vector notation, and instead use p1, p2, ...
422    """
423    def __init__(self, parameters):
424        # type: (List[Parameter]) -> None
425
426        # scale and background are implicit parameters
427        # Need them to be unique to each model in case they have different
428        # properties, such as default=0.0 for structure factor backgrounds.
429        self.common_parameters = [Parameter(*p) for p in COMMON_PARAMETERS]
430
431        self.kernel_parameters = parameters
432        self._set_vector_lengths()
433
434        self.npars = sum(p.length for p in self.kernel_parameters)
435        self.nmagnetic = sum(p.length for p in self.kernel_parameters
436                             if p.type == 'sld')
437        self.nvalues = 2 + self.npars
438        if self.nmagnetic:
439            self.nvalues += 3 + 3*self.nmagnetic
440
441        self.call_parameters = self._get_call_parameters()
442        self.defaults = self._get_defaults()
443        #self._name_table= dict((p.id, p) for p in parameters)
444
445        # Set the kernel parameters.  Assumes background and scale are the
446        # first two parameters in the parameter list, but these are not sent
447        # to the underlying kernel functions.
448        self.iq_parameters = [p for p in self.kernel_parameters
449                              if p.type not in ('orientation', 'magnetic')]
450        self.orientation_parameters = [p for p in self.kernel_parameters
451                                       if p.type == 'orientation']
452        self.form_volume_parameters = [p for p in self.kernel_parameters
453                                       if p.type == 'volume']
454
455        # Theta offset
456        offset = 0
457        for p in self.kernel_parameters:
458            if p.name == 'theta':
459                self.theta_offset = offset
460                break
461            offset += p.length
462        else:
463            self.theta_offset = -1
464
465        # number of polydisperse parameters
466        num_pd = sum(p.length for p in self.kernel_parameters if p.polydisperse)
467        # Don't use more polydisperse parameters than are available in the model
468        self.max_pd = min(num_pd, MAX_PD)
469
470        # true if has 2D parameters
471        self.has_2d = any(p.type in ('orientation', 'magnetic')
472                          for p in self.kernel_parameters)
473        self.is_asymmetric = any(p.name == 'psi' for p in self.kernel_parameters)
474        self.magnetism_index = [k for k, p in enumerate(self.call_parameters)
475                                if p.id.startswith('M0:')]
476
477        self.pd_1d = set(p.name for p in self.call_parameters
478                         if p.polydisperse and p.type not in ('orientation', 'magnetic'))
479        self.pd_2d = set(p.name for p in self.call_parameters if p.polydisperse)
480
481    def check_angles(self):
482        """
483        Check that orientation angles are theta, phi and possibly psi.
484        """
485        theta = phi = psi = -1
486        for k, p in enumerate(self.kernel_parameters):
487            if p.name == 'theta':
488                theta = k
489                if p.type != 'orientation':
490                    raise TypeError("theta must be an orientation parameter")
491            elif p.name == 'phi':
492                phi = k
493                if p.type != 'orientation':
494                    raise TypeError("phi must be an orientation parameter")
495            elif p.name == 'psi':
496                psi = k
497                if p.type != 'orientation':
498                    raise TypeError("psi must be an orientation parameter")
499            elif p.type == 'orientation':
500                raise TypeError("only theta, phi and psi can be orientation parameters")
501        if theta >= 0 and phi >= 0:
502            last_par = len(self.kernel_parameters) - 1
503            if phi != theta+1:
504                raise TypeError("phi must follow theta")
505            if psi >= 0 and psi != phi+1:
506                raise TypeError("psi must follow phi")
507            if (psi >= 0 and psi != last_par) or (psi < 0 and phi != last_par):
508                raise TypeError("orientation parameters must appear at the "
509                                "end of the parameter table")
510        elif theta >= 0 or phi >= 0 or psi >= 0:
511            raise TypeError("oriented shapes must have both theta and phi and maybe psi")
512
513    def __getitem__(self, key):
514        # Find the parameter definition
515        for par in self.call_parameters:
516            if par.name == key:
517                return par
518        raise KeyError("unknown parameter %r"%key)
519
520    def __contains__(self, key):
521        for par in self.call_parameters:
522            if par.name == key:
523                return True
524        return False
525
526    def _set_vector_lengths(self):
527        # type: () -> List[str]
528        """
529        Walk the list of kernel parameters, setting the length field of the
530        vector parameters from the upper limit of the reference parameter.
531
532        This needs to be done once the entire parameter table is available
533        since the reference may still be undefined when the parameter is
534        initially created.
535
536        Returns the list of control parameter names.
537
538        Note: This modifies the underlying parameter object.
539        """
540        # Sort out the length of the vector parameters such as thickness[n]
541        for p in self.kernel_parameters:
542            if p.length_control:
543                ref = self._get_ref(p)
544                ref.is_control = True
545                ref.polydisperse = False
546                low, high = ref.limits
547                if int(low) != low or int(high) != high or low < 0 or high > 20:
548                    raise ValueError("expected limits on %s to be within [0, 20]"
549                                     % ref.name)
550                p.length = int(high)
551
552    def _get_ref(self, p):
553        # type: (Parameter) -> Parameter
554        for ref in self.kernel_parameters:
555            if ref.id == p.length_control:
556                return ref
557        raise ValueError("no reference variable %r for %s"
558                         % (p.length_control, p.name))
559
560    def _get_defaults(self):
561        # type: () -> ParameterSet
562        """
563        Get a list of parameter defaults from the parameters.
564
565        Expands vector parameters into parameter id+number.
566        """
567        # Construct default values, including vector defaults
568        defaults = {}
569        for p in self.call_parameters:
570            if p.length == 1:
571                defaults[p.id] = p.default
572            else:
573                for k in range(1, p.length+1):
574                    defaults["%s%d"%(p.id, k)] = p.default
575        return defaults
576
577    def _get_call_parameters(self):
578        # type: () -> List[Parameter]
579        full_list = self.common_parameters[:]
580        for p in self.kernel_parameters:
581            if p.length == 1:
582                full_list.append(p)
583            else:
584                for k in range(1, p.length+1):
585                    pk = Parameter(p.id+str(k), p.units, p.default,
586                                   p.limits, p.type, p.description)
587                    pk.polydisperse = p.polydisperse
588                    pk.relative_pd = p.relative_pd
589                    pk.choices = p.choices
590                    full_list.append(pk)
591
592        # Add the magnetic parameters to the end of the call parameter list.
593        if self.nmagnetic > 0:
594            full_list.extend([
595                Parameter('up:frac_i', '', 0., [0., 1.],
596                          'magnetic', 'fraction of spin up incident'),
597                Parameter('up:frac_f', '', 0., [0., 1.],
598                          'magnetic', 'fraction of spin up final'),
599                Parameter('up:angle', 'degrees', 0., [0., 360.],
600                          'magnetic', 'spin up angle'),
601            ])
602            slds = [p for p in full_list if p.type == 'sld']
603            for p in slds:
604                full_list.extend([
605                    Parameter('M0:'+p.id, '1e-6/Ang^2', 0., [-np.inf, np.inf],
606                              'magnetic', 'magnetic amplitude for '+p.description),
607                    Parameter('mtheta:'+p.id, 'degrees', 0., [-90., 90.],
608                              'magnetic', 'magnetic latitude for '+p.description),
609                    Parameter('mphi:'+p.id, 'degrees', 0., [-180., 180.],
610                              'magnetic', 'magnetic longitude for '+p.description),
611                ])
612        #print("call parameters", full_list)
613        return full_list
614
615    def user_parameters(self, pars, is2d=True):
616        # type: (Dict[str, float], bool) -> List[Parameter]
617        """
618        Return the list of parameters for the given data type.
619
620        Vector parameters are expanded in place.  If multiple parameters
621        share the same vector length, then the parameters will be interleaved
622        in the result.  The control parameters come first.  For example,
623        if the parameter table is ordered as::
624
625            sld_core
626            sld_shell[num_shells]
627            sld_solvent
628            thickness[num_shells]
629            num_shells
630
631        and *pars[num_shells]=2* then the returned list will be::
632
633            num_shells
634            scale
635            background
636            sld_core
637            sld_shell1
638            thickness1
639            sld_shell2
640            thickness2
641            sld_solvent
642
643        Note that shell/thickness pairs are grouped together in the result
644        even though they were not grouped in the incoming table.  The control
645        parameter is always returned first since the GUI will want to set it
646        early, and rerender the table when it is changed.
647
648        Parameters marked as sld will automatically have a set of associated
649        magnetic parameters (m0:p, mtheta:p, mphi:p), as well as polarization
650        information (up:theta, up:frac_i, up:frac_f).
651        """
652        # control parameters go first
653        control = [p for p in self.kernel_parameters if p.is_control]
654
655        # Gather entries such as name[n] into groups of the same n
656        dependent = {} # type: Dict[str, List[Parameter]]
657        dependent.update((p.id, []) for p in control)
658        for p in self.kernel_parameters:
659            if p.length_control is not None:
660                dependent[p.length_control].append(p)
661
662        # Gather entries such as name[4] into groups of the same length
663        fixed_length = {}  # type: Dict[int, List[Parameter]]
664        for p in self.kernel_parameters:
665            if p.length > 1 and p.length_control is None:
666                fixed_length.setdefault(p.length, []).append(p)
667
668        # Using the call_parameters table, we already have expanded forms
669        # for each of the vector parameters; put them in a lookup table
670        # Note: p.id and p.name are currently identical for the call parameters
671        expanded_pars = dict((p.id, p) for p in self.call_parameters)
672
673        def append_group(name):
674            """add the named parameter, and related magnetic parameters if any"""
675            result.append(expanded_pars[name])
676            if is2d:
677                for tag in 'M0:', 'mtheta:', 'mphi:':
678                    if tag+name in expanded_pars:
679                        result.append(expanded_pars[tag+name])
680
681        # Gather the user parameters in order
682        result = control + self.common_parameters
683        for p in self.kernel_parameters:
684            if not is2d and p.type in ('orientation', 'magnetic'):
685                pass
686            elif p.is_control:
687                pass # already added
688            elif p.length_control is not None:
689                table = dependent.get(p.length_control, [])
690                if table:
691                    # look up length from incoming parameters
692                    table_length = int(pars.get(p.length_control, p.length))
693                    del dependent[p.length_control] # first entry seen
694                    for k in range(1, table_length+1):
695                        for entry in table:
696                            append_group(entry.id+str(k))
697                else:
698                    pass # already processed all entries
699            elif p.length > 1:
700                table = fixed_length.get(p.length, [])
701                if table:
702                    table_length = p.length
703                    del fixed_length[p.length]
704                    for k in range(1, table_length+1):
705                        for entry in table:
706                            append_group(entry.id+str(k))
707                else:
708                    pass # already processed all entries
709            else:
710                append_group(p.id)
711
712        if is2d and 'up:angle' in expanded_pars:
713            result.extend([
714                expanded_pars['up:frac_i'],
715                expanded_pars['up:frac_f'],
716                expanded_pars['up:angle'],
717            ])
718
719        return result
720
721def isstr(x):
722    # type: (Any) -> bool
723    """
724    Return True if the object is a string.
725    """
726    # TODO: 2-3 compatible tests for str, including unicode strings
727    return isinstance(x, str)
728
729
730#: Set of variables defined in the model that might contain C code
731C_SYMBOLS = ['Imagnetic', 'Iq', 'Iqxy', 'Iqac', 'Iqabc', 'form_volume', 'c_code']
732
733def _find_source_lines(model_info, kernel_module):
734    # type: (ModelInfo, ModuleType) -> None
735    """
736    Identify the location of the C source inside the model definition file.
737
738    This code runs through the source of the kernel module looking for lines
739    that contain C code (because it is a c function definition).  Clearly
740    there are all sorts of reasons why this might not work (e.g., code
741    commented out in a triple-quoted line block, code built using string
742    concatenation, code defined in the branch of an 'if' block, code imported
743    from another file), but it should work properly in the 95% case, and for
744    the remainder, getting the incorrect line number will merely be
745    inconvenient.
746    """
747    # Only need line numbers if we are creating a C module and the C symbols
748    # are defined.
749    if (callable(model_info.Iq)
750            or not any(hasattr(model_info, s) for s in C_SYMBOLS)):
751        return
752
753    # load the module source if we can
754    try:
755        source = inspect.getsource(kernel_module)
756    except IOError:
757        return
758
759    # look for symbol at the start of the line
760    for lineno, line in enumerate(source.split('\n')):
761        for name in C_SYMBOLS:
762            if line.startswith(name):
763                # Add 1 since some compilers complain about "#line 0"
764                model_info.lineno[name] = lineno + 1
765                break
766
767def make_model_info(kernel_module):
768    # type: (module) -> ModelInfo
769    """
770    Extract the model definition from the loaded kernel module.
771
772    Fill in default values for parts of the module that are not provided.
773
774    Note: vectorized Iq and Iqac/Iqabc functions will be created for python
775    models when the model is first called, not when the model is loaded.
776    """
777    if hasattr(kernel_module, "model_info"):
778        # Custom sum/multi models
779        return kernel_module.model_info
780    info = ModelInfo()
781
782    # Build the parameter table
783    #print("make parameter table", kernel_module.parameters)
784    parameters = make_parameter_table(getattr(kernel_module, 'parameters', []))
785
786    # background defaults to zero for structure factor models
787    structure_factor = getattr(kernel_module, 'structure_factor', False)
788    if structure_factor:
789        # Make sure background is the second common parameter.
790        assert parameters.common_parameters[1].id == "background"
791        parameters.common_parameters[1].default = 0.0
792
793    # TODO: remove demo parameters
794    # The plots in the docs are generated from the model default values.
795    # Sascomp set parameters from the command line, and so doesn't need
796    # demo values for testing.
797    demo = expand_pars(parameters, getattr(kernel_module, 'demo', None))
798
799    filename = abspath(kernel_module.__file__).replace('.pyc', '.py')
800    kernel_id = splitext(basename(filename))[0]
801    name = getattr(kernel_module, 'name', None)
802    if name is None:
803        name = " ".join(w.capitalize() for w in kernel_id.split('_'))
804
805    info.id = kernel_id  # string used to load the kernel
806    info.filename = filename
807    info.name = name
808    info.title = getattr(kernel_module, 'title', name+" model")
809    info.description = getattr(kernel_module, 'description', 'no description')
810    info.parameters = parameters
811    info.demo = demo
812    info.composition = None
813    info.docs = kernel_module.__doc__
814    info.category = getattr(kernel_module, 'category', None)
815    info.structure_factor = structure_factor
816    info.profile_axes = getattr(kernel_module, 'profile_axes', ['x', 'y'])
817    info.source = getattr(kernel_module, 'source', [])
818    info.c_code = getattr(kernel_module, 'c_code', None)
819    # TODO: check the structure of the tests
820    info.tests = getattr(kernel_module, 'tests', [])
821    info.ER = getattr(kernel_module, 'ER', None) # type: ignore
822    info.VR = getattr(kernel_module, 'VR', None) # type: ignore
823    info.form_volume = getattr(kernel_module, 'form_volume', None) # type: ignore
824    info.Iq = getattr(kernel_module, 'Iq', None) # type: ignore
825    info.Iqxy = getattr(kernel_module, 'Iqxy', None) # type: ignore
826    info.Iqac = getattr(kernel_module, 'Iqac', None) # type: ignore
827    info.Iqabc = getattr(kernel_module, 'Iqabc', None) # type: ignore
828    info.Imagnetic = getattr(kernel_module, 'Imagnetic', None) # type: ignore
829    info.profile = getattr(kernel_module, 'profile', None) # type: ignore
830    info.sesans = getattr(kernel_module, 'sesans', None) # type: ignore
831    # Default single and opencl to True for C models.  Python models have callable Iq.
832    info.opencl = getattr(kernel_module, 'opencl', not callable(info.Iq))
833    info.single = getattr(kernel_module, 'single', not callable(info.Iq))
834    info.random = getattr(kernel_module, 'random', None)
835
836    # multiplicity info
837    control_pars = [p.id for p in parameters.kernel_parameters if p.is_control]
838    default_control = control_pars[0] if control_pars else None
839    info.control = getattr(kernel_module, 'control', default_control)
840    info.hidden = getattr(kernel_module, 'hidden', None) # type: ignore
841
842    if callable(info.Iq) and parameters.has_2d:
843        raise ValueError("oriented python models not supported")
844
845    info.lineno = {}
846    _find_source_lines(info, kernel_module)
847
848    return info
849
850class ModelInfo(object):
851    """
852    Interpret the model definition file, categorizing the parameters.
853
854    The module can be loaded with a normal python import statement if you
855    know which module you need, or with __import__('sasmodels.model.'+name)
856    if the name is in a string.
857
858    The structure should be mostly static, other than the delayed definition
859    of *Iq*, *Iqac* and *Iqabc* if they need to be defined.
860    """
861    #: Full path to the file defining the kernel, if any.
862    filename = None         # type: Optional[str]
863    #: Id of the kernel used to load it from the filesystem.
864    id = None               # type: str
865    #: Display name of the model, which defaults to the model id but with
866    #: capitalization of the parts so for example core_shell defaults to
867    #: "Core Shell".
868    name = None             # type: str
869    #: Short description of the model.
870    title = None            # type: str
871    #: Long description of the model.
872    description = None      # type: str
873    #: Model parameter table. Parameters are defined using a list of parameter
874    #: definitions, each of which is contains parameter name, units,
875    #: default value, limits, type and description.  See :class:`Parameter`
876    #: for details on the individual parameters.  The parameters are gathered
877    #: into a :class:`ParameterTable`, which provides various views into the
878    #: parameter list.
879    parameters = None       # type: ParameterTable
880    #: Demo parameters as a *parameter:value* map used as the default values
881    #: for :mod:`compare`.  Any parameters not set in *demo* will use the
882    #: defaults from the parameter table.  That means no polydispersity, and
883    #: in the case of multiplicity models, a minimal model with no interesting
884    #: scattering.
885    demo = None             # type: Dict[str, float]
886    #: Composition is None if this is an independent model, or it is a
887    #: tuple with comoposition type ('product' or 'misture') and a list of
888    #: :class:`ModelInfo` blocks for the composed objects.  This allows us
889    #: to rebuild a complete mixture or product model from the info block.
890    #: *composition* is not given in the model definition file, but instead
891    #: arises when the model is constructed using names such as
892    #: *sphere*hardsphere* or *cylinder+sphere*.
893    composition = None      # type: Optional[Tuple[str, List[ModelInfo]]]
894    #: Name of the control parameter for a variant model such as :ref:`rpa`.
895    #: The *control* parameter should appear in the parameter table, with
896    #: limits defined as *[CASES]*, for case names such as
897    #: *CASES = ["diblock copolymer", "triblock copolymer", ...]*.
898    #: This should give *limits=[[case1, case2, ...]]*, but the
899    #: model loader translates this to *limits=[0, len(CASES)-1]*, and adds
900    #: *choices=CASES* to the :class:`Parameter` definition. Note that
901    #: models can use a list of cases as a parameter without it being a
902    #: control parameter.  Either way, the parameter is sent to the model
903    #: evaluator as *float(choice_num)*, where choices are numbered from 0.
904    #: See also :attr:`hidden`.
905    control = None          # type: str
906    #: Different variants require different parameters.  In order to show
907    #: just the parameters needed for the variant selected by :attr:`control`,
908    #: you should provide a function *hidden(control) -> set(['a', 'b', ...])*
909    #: indicating which parameters need to be hidden.  For multiplicity
910    #: models, you need to use the complete name of the parameter, including
911    #: its number.  So for example, if variant "a" uses only *sld1* and *sld2*,
912    #: then *sld3*, *sld4* and *sld5* of multiplicity parameter *sld[5]*
913    #: should be in the hidden set.
914    hidden = None           # type: Optional[Callable[[int], Set[str]]]
915    #: Doc string from the top of the model file.  This should be formatted
916    #: using ReStructuredText format, with latex markup in ".. math"
917    #: environments, or in dollar signs.  This will be automatically
918    #: extracted to a .rst file by :func:`generate.make_docs`, then
919    #: converted to HTML or PDF by Sphinx.
920    docs = None             # type: str
921    #: Location of the model description in the documentation.  This takes the
922    #: form of "section" or "section:subsection".  So for example,
923    #: :ref:`porod` uses *category="shape-independent"* so it is in the
924    #: :ref:`shape-independent` section whereas
925    #: :ref:`capped-cylinder` uses: *category="shape:cylinder"*, which puts
926    #: it in the :ref:`shape-cylinder` section.
927    category = None         # type: Optional[str]
928    #: True if the model can be computed accurately with single precision.
929    #: This is True by default, but models such as :ref:`bcc-paracrystal` set
930    #: it to False because they require double precision calculations.
931    single = None           # type: bool
932    #: True if the model can be run as an opencl model.  If for some reason
933    #: the model cannot be run in opencl (e.g., because the model passes
934    #: functions by reference), then set this to false.
935    opencl = None           # type: bool
936    #: True if the model is a structure factor used to model the interaction
937    #: between form factor models.  This will default to False if it is not
938    #: provided in the file.
939    structure_factor = None # type: bool
940    #: List of C source files used to define the model.  The source files
941    #: should define the *Iq* function, and possibly *Iqac* or *Iqabc* if the
942    #: model defines orientation parameters. Files containing the most basic
943    #: functions must appear first in the list, followed by the files that
944    #: use those functions.  Form factors are indicated by providing
945    #: an :attr:`ER` function.
946    source = None           # type: List[str]
947    #: The set of tests that must pass.  The format of the tests is described
948    #: in :mod:`model_test`.
949    tests = None            # type: List[TestCondition]
950    #: Returns the effective radius of the model given its volume parameters.
951    #: The presence of *ER* indicates that the model is a form factor model
952    #: that may be used together with a structure factor to form an implicit
953    #: multiplication model.
954    #:
955    #: The parameters to the *ER* function must be marked with type *volume*.
956    #: in the parameter table.  They will appear in the same order as they
957    #: do in the table.  The values passed to *ER* will be vectors, with one
958    #: value for each polydispersity condition.  For example, if the model
959    #: is polydisperse over both length and radius, then both length and
960    #: radius will have the same number of values in the vector, with one
961    #: value for each *length X radius*.  If only *radius* is polydisperse,
962    #: then the value for *length* will be repeated once for each value of
963    #: *radius*.  The *ER* function should return one effective radius for
964    #: each parameter set.  Multiplicity parameters will be received as
965    #: arrays, with one row per polydispersity condition.
966    ER = None               # type: Optional[Callable[[np.ndarray], np.ndarray]]
967    #: Returns the occupied volume and the total volume for each parameter set.
968    #: See :attr:`ER` for details on the parameters.
969    VR = None               # type: Optional[Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]]]
970    #: Arbitrary C code containing supporting functions, etc., to be inserted
971    #: after everything in source.  This can include Iq and Iqxy functions with
972    #: the full function signature, including all parameters.
973    c_code = None
974    #: Returns the form volume for python-based models.  Form volume is needed
975    #: for volume normalization in the polydispersity integral.  If no
976    #: parameters are *volume* parameters, then form volume is not needed.
977    #: For C-based models, (with :attr:`sources` defined, or with :attr:`Iq`
978    #: defined using a string containing C code), form_volume must also be
979    #: C code, either defined as a string, or in the sources.
980    form_volume = None      # type: Union[None, str, Callable[[np.ndarray], float]]
981    #: Returns *I(q, a, b, ...)* for parameters *a*, *b*, etc. defined
982    #: by the parameter table.  *Iq* can be defined as a python function, or
983    #: as a C function.  If it is defined in C, then set *Iq* to the body of
984    #: the C function, including the return statement.  This function takes
985    #: values for *q* and each of the parameters as separate *double* values
986    #: (which may be converted to float or long double by sasmodels).  All
987    #: source code files listed in :attr:`sources` will be loaded before the
988    #: *Iq* function is defined.  If *Iq* is not present, then sources should
989    #: define *static double Iq(double q, double a, double b, ...)* which
990    #: will return *I(q, a, b, ...)*.  Multiplicity parameters are sent as
991    #: pointers to doubles.  Constants in floating point expressions should
992    #: include the decimal point. See :mod:`generate` for more details.
993    Iq = None               # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
994    #: Returns *I(qab, qc, a, b, ...)*.  The interface follows :attr:`Iq`.
995    Iqac = None             # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
996    #: Returns *I(qa, qb, qc, a, b, ...)*.  The interface follows :attr:`Iq`.
997    Iqabc = None            # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
998    #: Returns *I(qx, qy, a, b, ...)*.  The interface follows :attr:`Iq`.
999    Imagnetic = None        # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
1000    #: Returns a model profile curve *x, y*.  If *profile* is defined, this
1001    #: curve will appear in response to the *Show* button in SasView.  Use
1002    #: :attr:`profile_axes` to set the axis labels.  Note that *y* values
1003    #: will be scaled by 1e6 before plotting.
1004    profile = None          # type: Optional[Callable[[np.ndarray], None]]
1005    #: Axis labels for the :attr:`profile` plot.  The default is *['x', 'y']*.
1006    #: Only the *x* component is used for now.
1007    profile_axes = None     # type: Tuple[str, str]
1008    #: Returns *sesans(z, a, b, ...)* for models which can directly compute
1009    #: the SESANS correlation function.  Note: not currently implemented.
1010    sesans = None           # type: Optional[Callable[[np.ndarray], np.ndarray]]
1011    #: Returns a random parameter set for the model
1012    random = None           # type: Optional[Callable[[], Dict[str, float]]]
1013    #: Line numbers for symbols defining C code
1014    lineno = None           # type: Dict[str, int]
1015
1016    def __init__(self):
1017        # type: () -> None
1018        pass
1019
1020    def get_hidden_parameters(self, control):
1021        """
1022        Returns the set of hidden parameters for the model.  *control* is the
1023        value of the control parameter.  Note that multiplicity models have
1024        an implicit control parameter, which is the parameter that controls
1025        the multiplicity.
1026        """
1027        if self.hidden is not None:
1028            hidden = self.hidden(control)
1029        else:
1030            controls = [p for p in self.parameters.kernel_parameters
1031                        if p.is_control]
1032            if len(controls) != 1:
1033                raise ValueError("more than one control parameter")
1034            hidden = set(p.id+str(k)
1035                         for p in self.parameters.kernel_parameters
1036                         for k in range(control+1, p.length+1)
1037                         if p.length > 1)
1038        return hidden
Note: See TracBrowser for help on using the repository browser.