source: sasmodels/sasmodels/kernelpy.py @ 8698a0d

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 8698a0d was 8698a0d, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

revise api for oriented shapes, allowing jitter in the frame of the sample

  • Property mode set to 100644
File size: 11.1 KB
Line 
1"""
2Python driver for python kernels
3
4Calls the kernel with a vector of $q$ values for a single parameter set.
5Polydispersity is supported by looping over different parameter sets and
6summing the results.  The interface to :class:`PyModel` matches those for
7:class:`kernelcl.GpuModel` and :class:`kerneldll.DllModel`.
8"""
9from __future__ import division, print_function
10
11import logging
12
13import numpy as np  # type: ignore
14from numpy import pi, sin, cos  #type: ignore
15
16from . import details
17from .generate import F64
18from .kernel import KernelModel, Kernel
19
20try:
21    from typing import Union, Callable
22except ImportError:
23    pass
24else:
25    DType = Union[None, str, np.dtype]
26
27class PyModel(KernelModel):
28    """
29    Wrapper for pure python models.
30    """
31    def __init__(self, model_info):
32        # Make sure Iq and Iqxy are available and vectorized
33        _create_default_functions(model_info)
34        self.info = model_info
35        self.dtype = np.dtype('d')
36        logging.info("load python model " + self.info.name)
37
38    def make_kernel(self, q_vectors):
39        q_input = PyInput(q_vectors, dtype=F64)
40        kernel = self.info.Iqxy if q_input.is_2d else self.info.Iq
41        return PyKernel(kernel, self.info, q_input)
42
43    def release(self):
44        """
45        Free resources associated with the model.
46        """
47        pass
48
49class PyInput(object):
50    """
51    Make q data available to the gpu.
52
53    *q_vectors* is a list of q vectors, which will be *[q]* for 1-D data,
54    and *[qx, qy]* for 2-D data.  Internally, the vectors will be reallocated
55    to get the best performance on OpenCL, which may involve shifting and
56    stretching the array to better match the memory architecture.  Additional
57    points will be evaluated with *q=1e-3*.
58
59    *dtype* is the data type for the q vectors. The data type should be
60    set to match that of the kernel, which is an attribute of
61    :class:`GpuProgram`.  Note that not all kernels support double
62    precision, so even if the program was created for double precision,
63    the *GpuProgram.dtype* may be single precision.
64
65    Call :meth:`release` when complete.  Even if not called directly, the
66    buffer will be released when the data object is freed.
67    """
68    def __init__(self, q_vectors, dtype):
69        self.nq = q_vectors[0].size
70        self.dtype = dtype
71        self.is_2d = (len(q_vectors) == 2)
72        if self.is_2d:
73            self.q = np.empty((self.nq, 2), dtype=dtype)
74            self.q[:, 0] = q_vectors[0]
75            self.q[:, 1] = q_vectors[1]
76        else:
77            self.q = np.empty(self.nq, dtype=dtype)
78            self.q[:self.nq] = q_vectors[0]
79
80    def release(self):
81        """
82        Free resources associated with the model inputs.
83        """
84        self.q = None
85
86class PyKernel(Kernel):
87    """
88    Callable SAS kernel.
89
90    *kernel* is the DllKernel object to call.
91
92    *model_info* is the module information
93
94    *q_input* is the DllInput q vectors at which the kernel should be
95    evaluated.
96
97    The resulting call method takes the *pars*, a list of values for
98    the fixed parameters to the kernel, and *pd_pars*, a list of (value,weight)
99    vectors for the polydisperse parameters.  *cutoff* determines the
100    integration limits: any points with combined weight less than *cutoff*
101    will not be calculated.
102
103    Call :meth:`release` when done with the kernel instance.
104    """
105    def __init__(self, kernel, model_info, q_input):
106        # type: (callable, ModelInfo, List[np.ndarray]) -> None
107        self.dtype = np.dtype('d')
108        self.info = model_info
109        self.q_input = q_input
110        self.res = np.empty(q_input.nq, q_input.dtype)
111        self.kernel = kernel
112        self.dim = '2d' if q_input.is_2d else '1d'
113
114        partable = model_info.parameters
115        #kernel_parameters = (partable.iqxy_parameters if q_input.is_2d
116        #                     else partable.iq_parameters)
117        kernel_parameters = partable.iq_parameters
118        volume_parameters = partable.form_volume_parameters
119
120        # Create an array to hold the parameter values.  There will be a
121        # single array whose values are updated as the calculator goes
122        # through the loop.  Arguments to the kernel and volume functions
123        # will use views into this vector, relying on the fact that a
124        # an array of no dimensions acts like a scalar.
125        parameter_vector = np.empty(len(partable.call_parameters)-2, 'd')
126
127        # Create views into the array to hold the arguments
128        offset = 0
129        kernel_args, volume_args = [], []
130        for p in partable.kernel_parameters:
131            if p.length == 1:
132                # Scalar values are length 1 vectors with no dimensions.
133                v = parameter_vector[offset:offset+1].reshape(())
134            else:
135                # Vector values are simple views.
136                v = parameter_vector[offset:offset+p.length]
137            offset += p.length
138            if p in kernel_parameters:
139                kernel_args.append(v)
140            if p in volume_parameters:
141                volume_args.append(v)
142
143        # Hold on to the parameter vector so we can use it to call kernel later.
144        # This may also be required to preserve the views into the vector.
145        self._parameter_vector = parameter_vector
146
147        # Generate a closure which calls the kernel with the views into the
148        # parameter array.
149        if q_input.is_2d:
150            form = model_info.Iqxy
151            qx, qy = q_input.q[:, 0], q_input.q[:, 1]
152            self._form = lambda: form(qx, qy, *kernel_args)
153        else:
154            form = model_info.Iq
155            q = q_input.q
156            self._form = lambda: form(q, *kernel_args)
157
158        # Generate a closure which calls the form_volume if it exists.
159        form_volume = model_info.form_volume
160        self._volume = ((lambda: form_volume(*volume_args)) if form_volume
161                        else (lambda: 1.0))
162
163    def __call__(self, call_details, values, cutoff, magnetic):
164        # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray
165        if magnetic:
166            raise NotImplementedError("Magnetism not implemented for pure python models")
167        #print("Calling python kernel")
168        #call_details.show(values)
169        res = _loops(self._parameter_vector, self._form, self._volume,
170                     self.q_input.nq, call_details, values, cutoff)
171        return res
172
173    def release(self):
174        # type: () -> None
175        """
176        Free resources associated with the kernel.
177        """
178        self.q_input.release()
179        self.q_input = None
180
181def _loops(parameters, form, form_volume, nq, call_details, values, cutoff):
182    # type: (np.ndarray, Callable[[], np.ndarray], Callable[[], float], int, details.CallDetails, np.ndarray, np.ndarray, float) -> None
183    ################################################################
184    #                                                              #
185    #   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   #
186    #   !!                                                    !!   #
187    #   !!  KEEP THIS CODE CONSISTENT WITH KERNEL_TEMPLATE.C  !!   #
188    #   !!                                                    !!   #
189    #   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   #
190    #                                                              #
191    ################################################################
192    n_pars = len(parameters)
193    parameters[:] = values[2:n_pars+2]
194    if call_details.num_active == 0:
195        pd_norm = float(form_volume())
196        scale = values[0]/(pd_norm if pd_norm != 0.0 else 1.0)
197        background = values[1]
198        return scale*form() + background
199
200    pd_value = values[2+n_pars:2+n_pars + call_details.num_weights]
201    pd_weight = values[2+n_pars + call_details.num_weights:]
202
203    pd_norm = 0.0
204    partial_weight = np.NaN
205    weight = np.NaN
206
207    p0_par = call_details.pd_par[0]
208    p0_length = call_details.pd_length[0]
209    p0_index = p0_length
210    p0_offset = call_details.pd_offset[0]
211
212    pd_par = call_details.pd_par[:call_details.num_active]
213    pd_offset = call_details.pd_offset[:call_details.num_active]
214    pd_stride = call_details.pd_stride[:call_details.num_active]
215    pd_length = call_details.pd_length[:call_details.num_active]
216
217    total = np.zeros(nq, 'd')
218    for loop_index in range(call_details.num_eval):
219        # update polydispersity parameter values
220        if p0_index == p0_length:
221            pd_index = (loop_index//pd_stride)%pd_length
222            parameters[pd_par] = pd_value[pd_offset+pd_index]
223            partial_weight = np.prod(pd_weight[pd_offset+pd_index][1:])
224            p0_index = loop_index%p0_length
225
226        weight = partial_weight * pd_weight[p0_offset + p0_index]
227        parameters[p0_par] = pd_value[p0_offset + p0_index]
228        p0_index += 1
229        if weight > cutoff:
230            # Call the scattering function
231            # Assume that NaNs are only generated if the parameters are bad;
232            # exclude all q for that NaN.  Even better would be to have an
233            # INVALID expression like the C models, but that is too expensive.
234            Iq = np.asarray(form(), 'd')
235            if np.isnan(Iq).any():
236                continue
237
238            # update value and norm
239            total += weight * Iq
240            pd_norm += weight * form_volume()
241
242    scale = values[0]/(pd_norm if pd_norm != 0.0 else 1.0)
243    background = values[1]
244    return scale*total + background
245
246
247def _create_default_functions(model_info):
248    """
249    Autogenerate missing functions, such as Iqxy from Iq.
250
251    This only works for Iqxy when Iq is written in python. :func:`make_source`
252    performs a similar role for Iq written in C.  This also vectorizes
253    any functions that are not already marked as vectorized.
254    """
255    _create_vector_Iq(model_info)
256    _create_vector_Iqxy(model_info)  # call create_vector_Iq() first
257
258
259def _create_vector_Iq(model_info):
260    """
261    Define Iq as a vector function if it exists.
262    """
263    Iq = model_info.Iq
264    if callable(Iq) and not getattr(Iq, 'vectorized', False):
265        #print("vectorizing Iq")
266        def vector_Iq(q, *args):
267            """
268            Vectorized 1D kernel.
269            """
270            return np.array([Iq(qi, *args) for qi in q])
271        vector_Iq.vectorized = True
272        model_info.Iq = vector_Iq
273
274def _create_vector_Iqxy(model_info):
275    """
276    Define Iqxy as a vector function if it exists, or default it from Iq().
277    """
278    Iq, Iqxy = model_info.Iq, model_info.Iqxy
279    if callable(Iqxy):
280        if not getattr(Iqxy, 'vectorized', False):
281            #print("vectorizing Iqxy")
282            def vector_Iqxy(qx, qy, *args):
283                """
284                Vectorized 2D kernel.
285                """
286                return np.array([Iqxy(qxi, qyi, *args) for qxi, qyi in zip(qx, qy)])
287            vector_Iqxy.vectorized = True
288            model_info.Iqxy = vector_Iqxy
289    elif callable(Iq):
290        #print("defaulting Iqxy")
291        # Iq is vectorized because create_vector_Iq was already called.
292        def default_Iqxy(qx, qy, *args):
293            """
294            Default 2D kernel.
295            """
296            return Iq(np.sqrt(qx**2 + qy**2), *args)
297        default_Iqxy.vectorized = True
298        model_info.Iqxy = default_Iqxy
Note: See TracBrowser for help on using the repository browser.