/* ########################################################## # # # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # # !! !! # # !! KEEP THIS CODE CONSISTENT WITH KERNELPY.PY !! # # !! !! # # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # # # ########################################################## */ #ifndef _PAR_BLOCK_ // protected block so we can include this code twice. #define _PAR_BLOCK_ typedef struct { #if MAX_PD > 0 int32_t pd_par[MAX_PD]; // id of the nth polydispersity variable int32_t pd_length[MAX_PD]; // length of the nth polydispersity weight vector int32_t pd_offset[MAX_PD]; // offset of pd weights in the value & weight vector int32_t pd_stride[MAX_PD]; // stride to move to the next index at this level #endif // MAX_PD > 0 int32_t pd_prod; // total number of voxels in hypercube int32_t pd_sum; // total length of the weights vector int32_t num_active; // number of non-trivial pd loops int32_t theta_par; // id of spherical correction variable } ProblemDetails; typedef struct { PARAMETER_TABLE; } ParameterBlock; #endif // _PAR_BLOCK_ #if defined(MAGNETIC) && NUM_MAGNETIC>0 // Return value restricted between low and high static double clip(double value, double low, double high) { return (value < low ? low : (value > high ? high : value)); } // Compute spin cross sections given in_spin and out_spin // To convert spin cross sections to sld b: // uu * (sld - m_sigma_x); // dd * (sld + m_sigma_x); // ud * (m_sigma_y + 1j*m_sigma_z); // du * (m_sigma_y - 1j*m_sigma_z); static void set_spins(double in_spin, double out_spin, double spins[4]) { in_spin = clip(in_spin, 0.0, 1.0); out_spin = clip(out_spin, 0.0, 1.0); spins[0] = sqrt(sqrt((1.0-in_spin) * (1.0-out_spin))); // dd spins[1] = sqrt(sqrt((1.0-in_spin) * out_spin)); // du spins[2] = sqrt(sqrt(in_spin * (1.0-out_spin))); // ud spins[3] = sqrt(sqrt(in_spin * out_spin)); // uu } static double mag_sld(double qx, double qy, double p, double mx, double my, double sld) { const double perp = qy*mx - qx*my; return sld + perp*p; } #endif // MAGNETIC kernel void KERNEL_NAME( int32_t nq, // number of q values const int32_t pd_start, // where we are in the polydispersity loop const int32_t pd_stop, // where we are stopping in the polydispersity loop global const ProblemDetails *details, global const double *values, global const double *q, // nq q values, with padding to boundary global double *result, // nq+1 return values, again with padding const double cutoff // cutoff in the polydispersity weight product ) { // Storage for the current parameter values. These will be updated as we // walk the polydispersity cube. local_values will be aliased to pvec. ParameterBlock local_values; double *pvec = (double *)&local_values; #if defined(MAGNETIC) && NUM_MAGNETIC>0 // Location of the sld parameters in the parameter pvec. // These parameters are updated with the effective sld due to magnetism. #if NUM_MAGNETIC > 3 const int32_t slds[] = { MAGNETIC_PARS }; #endif // TODO: could precompute these outside of the kernel. // Interpret polarization cross section. // up_frac_i = values[NUM_PARS+2]; // up_frac_f = values[NUM_PARS+3]; // up_angle = values[NUM_PARS+4]; double spins[4]; double cos_mspin, sin_mspin; set_spins(values[NUM_PARS+2], values[NUM_PARS+3], spins); SINCOS(-values[NUM_PARS+4]*M_PI_180, sin_mspin, cos_mspin); #endif // MAGNETIC // Fill in the initial variables // values[0] is scale // values[1] is background #ifdef USE_OPENMP #pragma omp parallel for #endif for (int i=0; i < NUM_PARS; i++) { pvec[i] = values[2+i]; //printf("p%d = %g\n",i, pvec[i]); } double pd_norm; //printf("start: %d %d\n",pd_start, pd_stop); if (pd_start == 0) { pd_norm = 0.0; #ifdef USE_OPENMP #pragma omp parallel for #endif for (int q_index=0; q_index < nq; q_index++) result[q_index] = 0.0; //printf("initializing %d\n", nq); } else { pd_norm = result[nq]; } //printf("start %d %g %g\n", pd_start, pd_norm, result[0]); #if MAX_PD>0 global const double *pd_value = values + NUM_VALUES + 2; global const double *pd_weight = pd_value + details->pd_sum; #endif // Jump into the middle of the polydispersity loop #if MAX_PD>4 int n4=details->pd_length[4]; int i4=(pd_start/details->pd_stride[4])%n4; const int p4=details->pd_par[4]; global const double *v4 = pd_value + details->pd_offset[4]; global const double *w4 = pd_weight + details->pd_offset[4]; #endif #if MAX_PD>3 int n3=details->pd_length[3]; int i3=(pd_start/details->pd_stride[3])%n3; const int p3=details->pd_par[3]; global const double *v3 = pd_value + details->pd_offset[3]; global const double *w3 = pd_weight + details->pd_offset[3]; //printf("offset %d: %d %d\n", 3, details->pd_offset[3], NUM_VALUES); #endif #if MAX_PD>2 int n2=details->pd_length[2]; int i2=(pd_start/details->pd_stride[2])%n2; const int p2=details->pd_par[2]; global const double *v2 = pd_value + details->pd_offset[2]; global const double *w2 = pd_weight + details->pd_offset[2]; #endif #if MAX_PD>1 int n1=details->pd_length[1]; int i1=(pd_start/details->pd_stride[1])%n1; const int p1=details->pd_par[1]; global const double *v1 = pd_value + details->pd_offset[1]; global const double *w1 = pd_weight + details->pd_offset[1]; #endif #if MAX_PD>0 int n0=details->pd_length[0]; int i0=(pd_start/details->pd_stride[0])%n0; const int p0=details->pd_par[0]; global const double *v0 = pd_value + details->pd_offset[0]; global const double *w0 = pd_weight + details->pd_offset[0]; //printf("w0:%p, values:%p, diff:%d, %d\n",w0,values,(w0-values),NUM_VALUES); #endif double spherical_correction=1.0; const int theta_par = details->theta_par; #if MAX_PD>0 const int fast_theta = (theta_par == p0); const int slow_theta = (theta_par >= 0 && !fast_theta); #else const int slow_theta = (theta_par >= 0); #endif int step = pd_start; #if MAX_PD>4 const double weight5 = 1.0; while (i4 < n4) { pvec[p4] = v4[i4]; double weight4 = w4[i4] * weight5; //printf("step:%d level %d: p:%d i:%d n:%d value:%g weight:%g\n", step, 4, p4, i4, n4, pvec[p4], weight4); #elif MAX_PD>3 const double weight4 = 1.0; #endif #if MAX_PD>3 while (i3 < n3) { pvec[p3] = v3[i3]; double weight3 = w3[i3] * weight4; //printf("step:%d level %d: p:%d i:%d n:%d value:%g weight:%g\n", step, 3, p3, i3, n3, pvec[p3], weight3); #elif MAX_PD>2 const double weight3 = 1.0; #endif #if MAX_PD>2 while (i2 < n2) { pvec[p2] = v2[i2]; double weight2 = w2[i2] * weight3; //printf("step:%d level %d: p:%d i:%d n:%d value:%g weight:%g\n", step, 2, p2, i2, n2, pvec[p2], weight2); #elif MAX_PD>1 const double weight2 = 1.0; #endif #if MAX_PD>1 while (i1 < n1) { pvec[p1] = v1[i1]; double weight1 = w1[i1] * weight2; //printf("step:%d level %d: p:%d i:%d n:%d value:%g weight:%g\n", step, 1, p1, i1, n1, pvec[p1], weight1); #elif MAX_PD>0 const double weight1 = 1.0; #endif if (slow_theta) { // Theta is not in inner loop spherical_correction = fmax(fabs(cos(M_PI_180*pvec[theta_par])), 1.e-6); } #if MAX_PD>0 while(i0 < n0) { pvec[p0] = v0[i0]; double weight0 = w0[i0] * weight1; //printf("step:%d level %d: p:%d i:%d n:%d value:%g weight:%g\n", step, 0, p0, i0, n0, pvec[p0], weight0); if (fast_theta) { // Theta is in inner loop spherical_correction = fmax(fabs(cos(M_PI_180*pvec[p0])), 1.e-6); } #else const double weight0 = 1.0; #endif //printf("step:%d of %d, pars:",step,pd_stop); for (int i=0; i < NUM_PARS; i++) printf("p%d=%g ",i, pvec[i]); printf("\n"); //printf("sphcor: %g\n", spherical_correction); #ifdef INVALID if (!INVALID(local_values)) #endif { // Accumulate I(q) // Note: weight==0 must always be excluded if (weight0 > cutoff) { // spherical correction has some nasty effects when theta is +90 or -90 // where it becomes zero. const double weight = weight0 * spherical_correction; pd_norm += weight * CALL_VOLUME(local_values); #ifdef USE_OPENMP #pragma omp parallel for #endif for (int q_index=0; q_index 0 const double qx = q[2*q_index]; const double qy = q[2*q_index+1]; const double qsq = qx*qx + qy*qy; // Constant across orientation, polydispersity for given qx, qy double scattering = 0.0; // TODO: what is the magnetic scattering at q=0 if (qsq > 1.e-16) { double p[4]; p[0] = (qy*cos_mspin + qx*sin_mspin)/qsq; p[3] = -p[0]; p[1] = p[2] = (qy*sin_mspin - qx*cos_mspin)/qsq; for (int index=0; index<4; index++) { const double xs = spins[index]; if (xs > 1.e-8) { const int spin_flip = (index==1) || (index==2); const double pk = p[index]; for (int axis=0; axis<=spin_flip; axis++) { #define M1 NUM_PARS+5 #define M2 NUM_PARS+8 #define M3 NUM_PARS+13 #define SLD(_M_offset, _sld_offset) \ pvec[_sld_offset] = xs * (axis \ ? (index==1 ? -values[_M_offset+2] : values[_M_offset+2]) \ : mag_sld(qx, qy, pk, values[_M_offset], values[_M_offset+1], \ (spin_flip ? 0.0 : values[_sld_offset+2]))) #if NUM_MAGNETIC==1 SLD(M1, MAGNETIC_PAR1); #elif NUM_MAGNETIC==2 SLD(M1, MAGNETIC_PAR1); SLD(M2, MAGNETIC_PAR2); #elif NUM_MAGNETIC==3 SLD(M1, MAGNETIC_PAR1); SLD(M2, MAGNETIC_PAR2); SLD(M3, MAGNETIC_PAR3); #else for (int sk=0; sk0 if (step >= pd_stop) break; ++i0; } i0 = 0; #endif #if MAX_PD>1 if (step >= pd_stop) break; ++i1; } i1 = 0; #endif #if MAX_PD>2 if (step >= pd_stop) break; ++i2; } i2 = 0; #endif #if MAX_PD>3 if (step >= pd_stop) break; ++i3; } i3 = 0; #endif #if MAX_PD>4 if (step >= pd_stop) break; ++i4; } i4 = 0; #endif //printf("res: %g/%g\n", result[0], pd_norm); // Remember the updated norm. result[nq] = pd_norm; }