1 | """ |
---|
2 | SAS model constructor. |
---|
3 | |
---|
4 | Small angle scattering models are defined by a set of kernel functions: |
---|
5 | |
---|
6 | *Iq(q, p1, p2, ...)* returns the scattering at q for a form with |
---|
7 | particular dimensions averaged over all orientations. |
---|
8 | |
---|
9 | *Iqxy(qx, qy, p1, p2, ...)* returns the scattering at qx,qy for a form |
---|
10 | with particular dimensions for a single orientation. |
---|
11 | |
---|
12 | *Imagnetic(qx, qy, result[], p1, p2, ...)* returns the scattering for the |
---|
13 | polarized neutron spin states (up-up, up-down, down-up, down-down) for |
---|
14 | a form with particular dimensions for a single orientation. |
---|
15 | |
---|
16 | *form_volume(p1, p2, ...)* returns the volume of the form with particular |
---|
17 | dimension. |
---|
18 | |
---|
19 | *ER(p1, p2, ...)* returns the effective radius of the form with |
---|
20 | particular dimensions. |
---|
21 | |
---|
22 | *VR(p1, p2, ...)* returns the volume ratio for core-shell style forms. |
---|
23 | |
---|
24 | These functions are defined in a kernel module .py script and an associated |
---|
25 | set of .c files. The model constructor will use them to create models with |
---|
26 | polydispersity across volume and orientation parameters, and provide |
---|
27 | scale and background parameters for each model. |
---|
28 | |
---|
29 | *Iq*, *Iqxy*, *Imagnetic* and *form_volume* should be stylized C-99 |
---|
30 | functions written for OpenCL. Floating point values should be |
---|
31 | declared as *real*. Depending on how the function is called, a macro |
---|
32 | will replace *real* with *float* or *double*. Unfortunately, MacOSX |
---|
33 | is picky about floating point constants, which should be defined with |
---|
34 | value + 'f' if they are of type *float* or just a bare value if they |
---|
35 | are of type *double*. The solution is a macro *REAL(value)* which |
---|
36 | adds the 'f' if compiling for single precision floating point. This |
---|
37 | does make the code ugly, and may someday be replaced by a clever |
---|
38 | regular expression which does the same job. OpenCL has a *sincos* |
---|
39 | function which can improve performance when both the *sin* and *cos* |
---|
40 | values are needed for a particular argument. Since this function |
---|
41 | does not exist in C-99, all use of *sincos* should be replaced by the |
---|
42 | macro *SINCOS(value,sn,cn)* where *sn* and *cn* are previously declared |
---|
43 | *real* values. *value* may be an expression. When compiled for systems |
---|
44 | without OpenCL, *SINCOS* will be replaced by *sin* and *cos* calls. All |
---|
45 | functions need prototype declarations even if the are defined before they |
---|
46 | are used -- another present from MacOSX. OpenCL does not support |
---|
47 | *#include* preprocessor directives; instead the includes must be listed |
---|
48 | in the kernel metadata, with functions defined before they are used. |
---|
49 | The included files should be listed using relative path to the kernel |
---|
50 | source file, or if using one of the standard models, relative to the |
---|
51 | sasmodels source files. |
---|
52 | |
---|
53 | *ER* and *VR* are python functions which operate on parameter vectors. |
---|
54 | The constructor code will generate the necessary vectors for computing |
---|
55 | them with the desired polydispersity. |
---|
56 | |
---|
57 | The kernel module must set variables defining the kernel meta data: |
---|
58 | |
---|
59 | *name* is the model name |
---|
60 | |
---|
61 | *title* is a short description of the model, suitable for a tool tip, |
---|
62 | or a one line model summary in a table of models. |
---|
63 | |
---|
64 | *description* is an extended description of the model to be displayed |
---|
65 | while the model parameters are being edited. |
---|
66 | |
---|
67 | *parameters* is a list of parameters. Each parameter is itself a |
---|
68 | list containing *name*, *units*, *default value*, |
---|
69 | [*lower bound*, *upper bound*], *type* and *description*. |
---|
70 | |
---|
71 | *source* is the list of C-99 source files that must be joined to |
---|
72 | create the OpenCL kernel functions. The files defining the functions |
---|
73 | need to be listed before the files which use the functions. |
---|
74 | |
---|
75 | *ER* is a python function defining the effective radius. If it is |
---|
76 | not present, the effective radius is 0. |
---|
77 | |
---|
78 | *VR* is a python function defining the volume ratio. If it is not |
---|
79 | present, the volume ratio is 1. |
---|
80 | |
---|
81 | The doc string at the start of the kernel module will be used to |
---|
82 | construct the model documentation web pages. Embedded figures should |
---|
83 | appear in the subdirectory "img" beside the model definition, and tagged |
---|
84 | with the kernel module name to avoid collision with other models. Some |
---|
85 | file systems are case-sensitive, so only use lower case characters for |
---|
86 | file names and extensions. |
---|
87 | |
---|
88 | Parameters are defined as follows: |
---|
89 | |
---|
90 | *name* is the name that will be used in the call to the kernel |
---|
91 | function and the name that will be displayed to the user. Names |
---|
92 | should be lower case, with words separated by underscore. If |
---|
93 | acronyms are used, the whole acronym should be upper case. |
---|
94 | |
---|
95 | *units* should be one of *degrees* for angles, *Ang* for lengths, |
---|
96 | *1e-6/Ang^2* for SLDs. |
---|
97 | |
---|
98 | *default value* will be the initial value for the model when it |
---|
99 | is selected, or when an initial value is not otherwise specified. |
---|
100 | |
---|
101 | *limits* are the valid bounds of the parameter, used to limit the |
---|
102 | polydispersity density function. In the fit, the parameter limits |
---|
103 | given to the fit are the limits on the central value of the parameter. |
---|
104 | If there is polydispersity, it will evaluate parameter values outside |
---|
105 | the fit limits, but not outside the hard limits specified in the model. |
---|
106 | If there are no limits, use +/-inf imported from numpy. |
---|
107 | |
---|
108 | *type* indicates how the parameter will be used. "volume" parameters |
---|
109 | will be used in all functions. "orientation" parameters will be used |
---|
110 | in *Iqxy* and *Imagnetic*. "magnetic* parameters will be used in |
---|
111 | *Imagnetic* only. If *type* is none, the parameter will be used in |
---|
112 | all of *Iq*, *Iqxy* and *Imagnetic*. This will probably be a |
---|
113 | is the empty string if the parameter is used in all model calculations, |
---|
114 | it is "volu |
---|
115 | |
---|
116 | *description* is a short description of the parameter. This will |
---|
117 | be displayed in the parameter table and used as a tool tip for the |
---|
118 | parameter value in the user interface. |
---|
119 | |
---|
120 | The function :func:`make` loads the metadata from the module and returns |
---|
121 | the kernel source. The function :func:`doc` extracts |
---|
122 | """ |
---|
123 | |
---|
124 | # TODO: identify model files which have changed since loading and reload them. |
---|
125 | |
---|
126 | __all__ = ["make, doc"] |
---|
127 | |
---|
128 | import os.path |
---|
129 | |
---|
130 | import numpy as np |
---|
131 | |
---|
132 | F64 = np.dtype('float64') |
---|
133 | F32 = np.dtype('float32') |
---|
134 | |
---|
135 | # Scale and background, which are parameters common to every form factor |
---|
136 | COMMON_PARAMETERS = [ |
---|
137 | [ "scale", "", 1, [0, np.inf], "", "Source intensity" ], |
---|
138 | [ "background", "1/cm", 0, [0, np.inf], "", "Source background" ], |
---|
139 | ] |
---|
140 | |
---|
141 | |
---|
142 | # Conversion from units defined in the parameter table for each model |
---|
143 | # to units displayed in the sphinx documentation. |
---|
144 | RST_UNITS = { |
---|
145 | "Ang": "|Ang|", |
---|
146 | "1/Ang^2": "|Ang^-2|", |
---|
147 | "1e-6/Ang^2": "|1e-6Ang^-2|", |
---|
148 | "degrees": "degree", |
---|
149 | "1/cm": "|cm^-1|", |
---|
150 | "": "None", |
---|
151 | } |
---|
152 | |
---|
153 | # Headers for the parameters tables in th sphinx documentation |
---|
154 | PARTABLE_HEADERS = [ |
---|
155 | "Parameter name", |
---|
156 | "Units", |
---|
157 | "Default value", |
---|
158 | ] |
---|
159 | |
---|
160 | PARTABLE_VALUE_WIDTH = 10 |
---|
161 | |
---|
162 | # Header included before every kernel. |
---|
163 | # This makes sure that the appropriate math constants are defined, and |
---|
164 | KERNEL_HEADER = """\ |
---|
165 | // GENERATED CODE --- DO NOT EDIT --- |
---|
166 | // Code is produced by sasmodels.gen from sasmodels/models/MODEL.c |
---|
167 | |
---|
168 | #ifdef __OPENCL_VERSION__ |
---|
169 | # define USE_OPENCL |
---|
170 | #endif |
---|
171 | |
---|
172 | // If opencl is not available, then we are compiling a C function |
---|
173 | // Note: if using a C++ compiler, then define kernel as extern "C" |
---|
174 | #ifndef USE_OPENCL |
---|
175 | # include <math.h> |
---|
176 | # define REAL(x) (x) |
---|
177 | # ifndef real |
---|
178 | # define real double |
---|
179 | # endif |
---|
180 | # define global |
---|
181 | # define local |
---|
182 | # define constant const |
---|
183 | # define kernel |
---|
184 | # define SINCOS(angle,svar,cvar) do {svar=sin(angle);cvar=cos(angle);} while (0) |
---|
185 | # define powr(a,b) pow(a,b) |
---|
186 | #else |
---|
187 | # ifdef USE_SINCOS |
---|
188 | # define SINCOS(angle,svar,cvar) svar=sincos(angle,&cvar) |
---|
189 | # else |
---|
190 | # define SINCOS(angle,svar,cvar) do {svar=sin(angle);cvar=cos(angle);} while (0) |
---|
191 | # endif |
---|
192 | #endif |
---|
193 | |
---|
194 | // Standard mathematical constants, prefixed with M_: |
---|
195 | // E, LOG2E, LOG10E, LN2, LN10, PI, PI_2, PI_4, 1_PI, 2_PI, |
---|
196 | // 2_SQRTPI, SQRT2, SQRT1_2 |
---|
197 | // OpenCL defines M_constant_F for float constants, and nothing if double |
---|
198 | // is not enabled on the card, which is why these constants may be missing |
---|
199 | #ifndef M_PI |
---|
200 | # define M_PI REAL(3.141592653589793) |
---|
201 | #endif |
---|
202 | #ifndef M_PI_2 |
---|
203 | # define M_PI_2 REAL(1.570796326794897) |
---|
204 | #endif |
---|
205 | #ifndef M_PI_4 |
---|
206 | # define M_PI_4 REAL(0.7853981633974483) |
---|
207 | #endif |
---|
208 | |
---|
209 | // Non-standard pi/180, used for converting between degrees and radians |
---|
210 | #ifndef M_PI_180 |
---|
211 | # define M_PI_180 REAL(0.017453292519943295) |
---|
212 | #endif |
---|
213 | """ |
---|
214 | |
---|
215 | |
---|
216 | # The I(q) kernel and the I(qx, qy) kernel have one and two q parameters |
---|
217 | # respectively, so the template builder will need to do extra work to |
---|
218 | # declare, initialize and pass the q parameters. |
---|
219 | KERNEL_1D = { |
---|
220 | 'fn': "Iq", |
---|
221 | 'q_par_decl': "global const real *q,", |
---|
222 | 'qinit': "const real qi = q[i];", |
---|
223 | 'qcall': "qi", |
---|
224 | } |
---|
225 | |
---|
226 | KERNEL_2D = { |
---|
227 | 'fn': "Iqxy", |
---|
228 | 'q_par_decl': "global const real *qx,\n global const real *qy,", |
---|
229 | 'qinit': "const real qxi = qx[i];\n const real qyi = qy[i];", |
---|
230 | 'qcall': "qxi, qyi", |
---|
231 | } |
---|
232 | |
---|
233 | # Generic kernel template for opencl/openmp. |
---|
234 | # This defines the opencl kernel that is available to the host. The same |
---|
235 | # structure is used for Iq and Iqxy kernels, so extra flexibility is needed |
---|
236 | # for q parameters. The polydispersity loop is built elsewhere and |
---|
237 | # substituted into this template. |
---|
238 | KERNEL_TEMPLATE = """\ |
---|
239 | kernel void %(name)s( |
---|
240 | %(q_par_decl)s |
---|
241 | global real *result, |
---|
242 | #ifdef USE_OPENCL |
---|
243 | global real *loops_g, |
---|
244 | #else |
---|
245 | const int Nq, |
---|
246 | #endif |
---|
247 | local real *loops, |
---|
248 | const real cutoff, |
---|
249 | %(par_decl)s |
---|
250 | ) |
---|
251 | { |
---|
252 | #ifdef USE_OPENCL |
---|
253 | // copy loops info to local memory |
---|
254 | event_t e = async_work_group_copy(loops, loops_g, (%(pd_length)s)*2, 0); |
---|
255 | wait_group_events(1, &e); |
---|
256 | |
---|
257 | int i = get_global_id(0); |
---|
258 | int Nq = get_global_size(0); |
---|
259 | #endif |
---|
260 | |
---|
261 | #ifdef USE_OPENCL |
---|
262 | if (i < Nq) |
---|
263 | #else |
---|
264 | #pragma omp parallel for |
---|
265 | for (int i=0; i < Nq; i++) |
---|
266 | #endif |
---|
267 | { |
---|
268 | %(qinit)s |
---|
269 | real ret=REAL(0.0), norm=REAL(0.0); |
---|
270 | real vol=REAL(0.0), norm_vol=REAL(0.0); |
---|
271 | %(loops)s |
---|
272 | if (vol*norm_vol != REAL(0.0)) { |
---|
273 | ret *= norm_vol/vol; |
---|
274 | } |
---|
275 | result[i] = scale*ret/norm+background; |
---|
276 | } |
---|
277 | } |
---|
278 | """ |
---|
279 | |
---|
280 | # Polydispersity loop level. |
---|
281 | # This pulls the parameter value and weight from the looping vector in order |
---|
282 | # in preperation for a nested loop. |
---|
283 | LOOP_OPEN="""\ |
---|
284 | for (int %(name)s_i=0; %(name)s_i < N%(name)s; %(name)s_i++) { |
---|
285 | const real %(name)s = loops[2*(%(name)s_i%(offset)s)]; |
---|
286 | const real %(name)s_w = loops[2*(%(name)s_i%(offset)s)+1];""" |
---|
287 | |
---|
288 | # Polydispersity loop body. |
---|
289 | # This computes the weight, and if it is sufficient, calls the scattering |
---|
290 | # function and adds it to the total. If there is a volume normalization, |
---|
291 | # it will also be added here. |
---|
292 | LOOP_BODY="""\ |
---|
293 | const real weight = %(weight_product)s; |
---|
294 | if (weight > cutoff) { |
---|
295 | ret += weight*%(fn)s(%(qcall)s, %(pcall)s); |
---|
296 | norm += weight; |
---|
297 | %(volume_norm)s |
---|
298 | }""" |
---|
299 | |
---|
300 | # Volume normalization. |
---|
301 | # If there are "volume" polydispersity parameters, then these will be used |
---|
302 | # to call the form_volume function from the user supplied kernel, and accumulate |
---|
303 | # a normalized weight. |
---|
304 | VOLUME_NORM="""const real vol_weight = %(weight)s; |
---|
305 | vol += vol_weight*form_volume(%(pars)s); |
---|
306 | norm_vol += vol_weight;""" |
---|
307 | |
---|
308 | # Documentation header for the module, giving the model name, its short |
---|
309 | # description and its parameter table. The remainder of the doc comes |
---|
310 | # from the module docstring. |
---|
311 | DOC_HEADER=""".. _%(name)s: |
---|
312 | |
---|
313 | %(name)s |
---|
314 | ======================================================= |
---|
315 | |
---|
316 | %(title)s |
---|
317 | |
---|
318 | %(parameters)s |
---|
319 | |
---|
320 | The returned value is scaled to units of |cm^-1|. |
---|
321 | |
---|
322 | %(docs)s |
---|
323 | """ |
---|
324 | |
---|
325 | def indent(s, depth): |
---|
326 | """ |
---|
327 | Indent a string of text with *depth* additional spaces on each line. |
---|
328 | """ |
---|
329 | spaces = " "*depth |
---|
330 | sep = "\n"+spaces |
---|
331 | return spaces + sep.join(s.split("\n")) |
---|
332 | |
---|
333 | |
---|
334 | def kernel_name(info, is_2D): |
---|
335 | return info['name'] + "_" + ("Iqxy" if is_2D else "Iq") |
---|
336 | |
---|
337 | |
---|
338 | def make_kernel(info, is_2D): |
---|
339 | """ |
---|
340 | Build a kernel call from metadata supplied by the user. |
---|
341 | |
---|
342 | *info* is the json object defined in the kernel file. |
---|
343 | |
---|
344 | *form* is either "Iq" or "Iqxy". |
---|
345 | |
---|
346 | This does not create a complete OpenCL kernel source, only the top |
---|
347 | level kernel call with polydispersity and a call to the appropriate |
---|
348 | Iq or Iqxy function. |
---|
349 | """ |
---|
350 | |
---|
351 | # If we are building the Iqxy kernel, we need to propagate qx,qy |
---|
352 | # parameters, otherwise we can |
---|
353 | dim = "2d" if is_2D else "1d" |
---|
354 | fixed_pars = info['partype']['fixed-'+dim] |
---|
355 | pd_pars = info['partype']['pd-'+dim] |
---|
356 | vol_pars = info['partype']['volume'] |
---|
357 | q_pars = KERNEL_2D if is_2D else KERNEL_1D |
---|
358 | |
---|
359 | # Build polydispersity loops |
---|
360 | depth = 4 |
---|
361 | offset = "" |
---|
362 | loop_head = [] |
---|
363 | loop_end = [] |
---|
364 | for name in pd_pars: |
---|
365 | subst = { 'name': name, 'offset': offset } |
---|
366 | loop_head.append(indent(LOOP_OPEN%subst, depth)) |
---|
367 | loop_end.insert(0, (" "*depth) + "}") |
---|
368 | offset += '+N'+name |
---|
369 | depth += 2 |
---|
370 | |
---|
371 | # The volume parameters in the inner loop are used to call the volume() |
---|
372 | # function in the kernel, with the parameters defined in vol_pars and the |
---|
373 | # weight product defined in weight. If there are no volume parameters, |
---|
374 | # then there will be no volume normalization. |
---|
375 | if vol_pars: |
---|
376 | subst = { |
---|
377 | 'weight': "*".join(p+"_w" for p in vol_pars), |
---|
378 | 'pars': ", ".join(vol_pars), |
---|
379 | } |
---|
380 | volume_norm = VOLUME_NORM%subst |
---|
381 | else: |
---|
382 | volume_norm = "" |
---|
383 | |
---|
384 | # Define the inner loop function call |
---|
385 | # The parameters to the f(q,p1,p2...) call should occur in the same |
---|
386 | # order as given in the parameter info structure. This may be different |
---|
387 | # from the parameter order in the call to the kernel since the kernel |
---|
388 | # call places all fixed parameters before all polydisperse parameters. |
---|
389 | fq_pars = [p[0] for p in info['parameters'][len(COMMON_PARAMETERS):] |
---|
390 | if p[0] in set(fixed_pars+pd_pars)] |
---|
391 | subst = { |
---|
392 | 'weight_product': "*".join(p+"_w" for p in pd_pars), |
---|
393 | 'volume_norm': volume_norm, |
---|
394 | 'fn': q_pars['fn'], |
---|
395 | 'qcall': q_pars['qcall'], |
---|
396 | 'pcall': ", ".join(fq_pars), # skip scale and background |
---|
397 | } |
---|
398 | loop_body = [indent(LOOP_BODY%subst, depth)] |
---|
399 | loops = "\n".join(loop_head+loop_body+loop_end) |
---|
400 | |
---|
401 | # declarations for non-pd followed by pd pars |
---|
402 | # e.g., |
---|
403 | # const real sld, |
---|
404 | # const int Nradius |
---|
405 | fixed_par_decl = ",\n ".join("const real %s"%p for p in fixed_pars) |
---|
406 | pd_par_decl = ",\n ".join("const int N%s"%p for p in pd_pars) |
---|
407 | if fixed_par_decl and pd_par_decl: |
---|
408 | par_decl = ",\n ".join((fixed_par_decl, pd_par_decl)) |
---|
409 | elif fixed_par_decl: |
---|
410 | par_decl = fixed_par_decl |
---|
411 | else: |
---|
412 | par_decl = pd_par_decl |
---|
413 | |
---|
414 | # Finally, put the pieces together in the kernel. |
---|
415 | subst = { |
---|
416 | # kernel name is, e.g., cylinder_Iq |
---|
417 | 'name': kernel_name(info, is_2D), |
---|
418 | # to declare, e.g., global real q[], |
---|
419 | 'q_par_decl': q_pars['q_par_decl'], |
---|
420 | # to declare, e.g., real sld, int Nradius, int Nlength |
---|
421 | 'par_decl': par_decl, |
---|
422 | # to copy global to local pd pars we need, e.g., Nradius+Nlength |
---|
423 | 'pd_length': "+".join('N'+p for p in pd_pars), |
---|
424 | # the q initializers, e.g., real qi = q[i]; |
---|
425 | 'qinit': q_pars['qinit'], |
---|
426 | # the actual polydispersity loop |
---|
427 | 'loops': loops, |
---|
428 | } |
---|
429 | kernel = KERNEL_TEMPLATE%subst |
---|
430 | return kernel |
---|
431 | |
---|
432 | def make_partable(info): |
---|
433 | pars = info['parameters'] |
---|
434 | column_widths = [ |
---|
435 | max(len(p[0]) for p in pars), |
---|
436 | max(len(RST_UNITS[p[1]]) for p in pars), |
---|
437 | PARTABLE_VALUE_WIDTH, |
---|
438 | ] |
---|
439 | column_widths = [max(w, len(h)) |
---|
440 | for w,h in zip(column_widths, PARTABLE_HEADERS)] |
---|
441 | |
---|
442 | sep = " ".join("="*w for w in column_widths) |
---|
443 | lines = [ |
---|
444 | sep, |
---|
445 | " ".join("%-*s"%(w,h) for w,h in zip(column_widths, PARTABLE_HEADERS)), |
---|
446 | sep, |
---|
447 | ] |
---|
448 | for p in pars: |
---|
449 | lines.append(" ".join([ |
---|
450 | "%-*s"%(column_widths[0],p[0]), |
---|
451 | "%-*s"%(column_widths[1],RST_UNITS[p[1]]), |
---|
452 | "%*g"%(column_widths[2],p[2]), |
---|
453 | ])) |
---|
454 | lines.append(sep) |
---|
455 | return "\n".join(lines) |
---|
456 | |
---|
457 | def _search(search_path, filename): |
---|
458 | """ |
---|
459 | Find *filename* in *search_path*. |
---|
460 | |
---|
461 | Raises ValueError if file does not exist. |
---|
462 | """ |
---|
463 | for path in search_path: |
---|
464 | target = os.path.join(path, filename) |
---|
465 | if os.path.exists(target): |
---|
466 | return target |
---|
467 | raise ValueError("%r not found in %s"%(filename, search_path)) |
---|
468 | |
---|
469 | def make_model(search_path, info): |
---|
470 | kernel_Iq = make_kernel(info, is_2D=False) |
---|
471 | kernel_Iqxy = make_kernel(info, is_2D=True) |
---|
472 | source = [open(_search(search_path, f)).read() for f in info['source']] |
---|
473 | kernel = "\n\n".join([KERNEL_HEADER]+source+[kernel_Iq, kernel_Iqxy]) |
---|
474 | return kernel |
---|
475 | |
---|
476 | def categorize_parameters(pars): |
---|
477 | """ |
---|
478 | Build parameter categories out of the the parameter definitions. |
---|
479 | |
---|
480 | Returns a dictionary of categories. |
---|
481 | |
---|
482 | The function call sequence consists of q inputs and the return vector, |
---|
483 | followed by the loop value/weight vector, followed by the values for |
---|
484 | the non-polydisperse parameters, followed by the lengths of the |
---|
485 | polydispersity loops. To construct the call for 1D models, the |
---|
486 | categories *fixed-1d* and *pd-1d* list the names of the parameters |
---|
487 | of the non-polydisperse and the polydisperse parameters respectively. |
---|
488 | Similarly, *fixed-2d* and *pd-2d* provide parameter names for 2D models. |
---|
489 | The *pd-rel* category is a set of those parameters which give |
---|
490 | polydispersitiy as a portion of the value (so a 10% length dispersity |
---|
491 | would use a polydispersity value of 0.1) rather than absolute |
---|
492 | dispersity such as an angle plus or minus 15 degrees. |
---|
493 | |
---|
494 | The *volume* category lists the volume parameters in order for calls |
---|
495 | to volume within the kernel (used for volume normalization) and for |
---|
496 | calls to ER and VR for effective radius and volume ratio respectively. |
---|
497 | |
---|
498 | The *orientation* and *magnetic* categories list the orientation and |
---|
499 | magnetic parameters. These are used by the sasview interface. The |
---|
500 | blank category is for parameters such as scale which don't have any |
---|
501 | other marking. |
---|
502 | """ |
---|
503 | partype = { |
---|
504 | 'volume': [], 'orientation': [], 'magnetic': [], '': [], |
---|
505 | 'fixed-1d': [], 'fixed-2d': [], 'pd-1d': [], 'pd-2d': [], |
---|
506 | 'pd-rel': set(), |
---|
507 | } |
---|
508 | |
---|
509 | for p in pars: |
---|
510 | name,ptype = p[0],p[4] |
---|
511 | if ptype == 'volume': |
---|
512 | partype['pd-1d'].append(name) |
---|
513 | partype['pd-2d'].append(name) |
---|
514 | partype['pd-rel'].add(name) |
---|
515 | elif ptype == 'magnetic': |
---|
516 | partype['fixed-2d'].append(name) |
---|
517 | elif ptype == 'orientation': |
---|
518 | partype['pd-2d'].append(name) |
---|
519 | elif ptype == '': |
---|
520 | partype['fixed-1d'].append(name) |
---|
521 | partype['fixed-2d'].append(name) |
---|
522 | else: |
---|
523 | raise ValueError("unknown parameter type %r"%ptype) |
---|
524 | partype[ptype].append(name) |
---|
525 | |
---|
526 | return partype |
---|
527 | |
---|
528 | def make(kernel_module): |
---|
529 | """ |
---|
530 | Build an OpenCL/ctypes function from the definition in *kernel_module*. |
---|
531 | |
---|
532 | The module can be loaded with a normal python import statement if you |
---|
533 | know which module you need, or with __import__('sasmodels.model.'+name) |
---|
534 | if the name is in a string. |
---|
535 | """ |
---|
536 | # TODO: allow Iq and Iqxy to be defined in python |
---|
537 | from os.path import abspath, dirname, join as joinpath |
---|
538 | #print kernelfile |
---|
539 | info = dict( |
---|
540 | filename = abspath(kernel_module.__file__), |
---|
541 | name = kernel_module.name, |
---|
542 | title = kernel_module.title, |
---|
543 | source = kernel_module.source, |
---|
544 | description = kernel_module.description, |
---|
545 | parameters = COMMON_PARAMETERS + kernel_module.parameters, |
---|
546 | ER = getattr(kernel_module, 'ER', None), |
---|
547 | VR = getattr(kernel_module, 'VR', None), |
---|
548 | ) |
---|
549 | info['limits'] = dict((p[0],p[3]) for p in info['parameters']) |
---|
550 | info['partype'] = categorize_parameters(info['parameters']) |
---|
551 | |
---|
552 | search_path = [ dirname(info['filename']), |
---|
553 | abspath(joinpath(dirname(__file__),'models')) ] |
---|
554 | source = make_model(search_path, info) |
---|
555 | |
---|
556 | return source, info |
---|
557 | |
---|
558 | def doc(kernel_module): |
---|
559 | """ |
---|
560 | Return the documentation for the model. |
---|
561 | """ |
---|
562 | subst = dict(name=kernel_module.name, |
---|
563 | title=kernel_module.title, |
---|
564 | parameters=make_partable(kernel_module.parameters), |
---|
565 | doc=kernel_module.__doc__) |
---|
566 | return DOC_HEADER%subst |
---|
567 | |
---|
568 | |
---|
569 | def demo_time(): |
---|
570 | import datetime |
---|
571 | tic = datetime.datetime.now() |
---|
572 | toc = lambda: (datetime.datetime.now()-tic).total_seconds() |
---|
573 | path = os.path.dirname("__file__") |
---|
574 | doc, c = make_model(os.path.join(path, "models", "cylinder.c")) |
---|
575 | print "time:",toc() |
---|
576 | |
---|
577 | def demo(): |
---|
578 | from os.path import join as joinpath, dirname |
---|
579 | c, info, doc = make_model(joinpath(dirname(__file__), "models", "cylinder.c")) |
---|
580 | #print doc |
---|
581 | #print c |
---|
582 | |
---|
583 | if __name__ == "__main__": |
---|
584 | demo() |
---|