source: sasmodels/sasmodels/gen.py @ 3699587

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 3699587 was 3699587, checked in by Paul Kienzle <pkienzle@…>, 9 years ago

document double→float conversion internals

  • Property mode set to 100644
File size: 25.4 KB
Line 
1"""
2SAS model constructor.
3
4Small angle scattering models are defined by a set of kernel functions:
5
6    *Iq(q, p1, p2, ...)* returns the scattering at q for a form with
7    particular dimensions averaged over all orientations.
8
9    *Iqxy(qx, qy, p1, p2, ...)* returns the scattering at qx,qy for a form
10    with particular dimensions for a single orientation.
11
12    *Imagnetic(qx, qy, result[], p1, p2, ...)* returns the scattering for the
13    polarized neutron spin states (up-up, up-down, down-up, down-down) for
14    a form with particular dimensions for a single orientation.
15
16    *form_volume(p1, p2, ...)* returns the volume of the form with particular
17    dimension.
18
19    *ER(p1, p2, ...)* returns the effective radius of the form with
20    particular dimensions.
21
22    *VR(p1, p2, ...)* returns the volume ratio for core-shell style forms.
23
24These functions are defined in a kernel module .py script and an associated
25set of .c files.  The model constructor will use them to create models with
26polydispersity across volume and orientation parameters, and provide
27scale and background parameters for each model.
28
29*Iq*, *Iqxy*, *Imagnetic* and *form_volume* should be stylized C-99
30functions written for OpenCL.  All functions need prototype declarations
31even if the are defined before they are used.  OpenCL does not support
32*#include* preprocessor directives, so instead the list of includes needs
33to be given as part of the metadata in the kernel module definition.
34The included files should be listed using a path relative to the kernel
35module, or if using "lib/file.c" if it is one of the standard includes
36provided with the sasmodels source.  The includes need to be listed in
37order so that functions are defined before they are used.
38
39Floating point values should be declared as *double*.  For single precision
40calculations, *double* will be replaced by *float*.  The single precision
41conversion will also tag floating point constants with "f" to make them
42single precision constants.  When using integral values in floating point
43expressions, they should be expressed as floating point values by including
44a decimal point.  This includes 0., 1. and 2.
45
46OpenCL has a *sincos* function which can improve performance when both
47the *sin* and *cos* values are needed for a particular argument.  Since
48this function does not exist in C99, all use of *sincos* should be
49replaced by the macro *SINCOS(value,sn,cn)* where *sn* and *cn* are
50previously declared *double* variables.  When compiled for systems without
51OpenCL, *SINCOS* will be replaced by *sin* and *cos* calls.   If *value* is
52an expression, it will appear twice in this case; whether or not it will be
53evaluated twice depends on the quality of the compiler.
54
55If the input parameters are invalid, the scattering calculator should
56return a negative number. Particularly with polydispersity, there are
57some sets of shape parameters which lead to nonsensical forms, such
58as a capped cylinder where the cap radius is smaller than the
59cylinder radius.  The polydispersity calculation will ignore these points,
60effectively chopping the parameter weight distributions at the boundary
61of the infeasible region.  The resulting scattering will be set to
62background.  This will work correctly even when polydispersity is off.
63
64*ER* and *VR* are python functions which operate on parameter vectors.
65The constructor code will generate the necessary vectors for computing
66them with the desired polydispersity.
67
68The available kernel parameters are defined as a list, with each parameter
69defined as a sublist with the following elements:
70
71    *name* is the name that will be used in the call to the kernel
72    function and the name that will be displayed to the user.  Names
73    should be lower case, with words separated by underscore.  If
74    acronyms are used, the whole acronym should be upper case.
75
76    *units* should be one of *degrees* for angles, *Ang* for lengths,
77    *1e-6/Ang^2* for SLDs.
78
79    *default value* will be the initial value for  the model when it
80    is selected, or when an initial value is not otherwise specified.
81
82    [*lb*, *ub*] are the hard limits on the parameter value, used to limit
83    the polydispersity density function.  In the fit, the parameter limits
84    given to the fit are the limits  on the central value of the parameter.
85    If there is polydispersity, it will evaluate parameter values outside
86    the fit limits, but not outside the hard limits specified in the model.
87    If there are no limits, use +/-inf imported from numpy.
88
89    *type* indicates how the parameter will be used.  "volume" parameters
90    will be used in all functions.  "orientation" parameters will be used
91    in *Iqxy* and *Imagnetic*.  "magnetic* parameters will be used in
92    *Imagnetic* only.  If *type* is the empty string, the parameter will
93    be used in all of *Iq*, *Iqxy* and *Imagnetic*.
94
95    *description* is a short description of the parameter.  This will
96    be displayed in the parameter table and used as a tool tip for the
97    parameter value in the user interface.
98
99The kernel module must set variables defining the kernel meta data:
100
101    *name* is the model name
102
103    *title* is a short description of the model, suitable for a tool tip,
104    or a one line model summary in a table of models.
105
106    *description* is an extended description of the model to be displayed
107    while the model parameters are being edited.
108
109    *parameters* is the list of parameters.  Parameters in the kernel
110    functions must appear in the same order as they appear in the
111    parameters list.  Two additional parameters, *scale* and *background*
112    are added to the beginning of the parameter list.  They will show up
113    in the documentation as model parameters, but they are never sent to
114    the kernel functions.
115
116    *source* is the list of C-99 source files that must be joined to
117    create the OpenCL kernel functions.  The files defining the functions
118    need to be listed before the files which use the functions.
119
120    *ER* is a python function defining the effective radius.  If it is
121    not present, the effective radius is 0.
122
123    *VR* is a python function defining the volume ratio.  If it is not
124    present, the volume ratio is 1.
125
126    *form_volume*, *Iq*, *Iqxy*, *Imagnetic* are strings containing the
127    C source code for the body of the volume, Iq, and Iqxy functions
128    respectively.  These can also be defined in the last source file.
129
130An *info* dictionary is constructed from the kernel meta data and
131returned to the caller.  It includes the additional fields
132
133
134The model evaluator, function call sequence consists of q inputs and the return vector,
135followed by the loop value/weight vector, followed by the values for
136the non-polydisperse parameters, followed by the lengths of the
137polydispersity loops.  To construct the call for 1D models, the
138categories *fixed-1d* and *pd-1d* list the names of the parameters
139of the non-polydisperse and the polydisperse parameters respectively.
140Similarly, *fixed-2d* and *pd-2d* provide parameter names for 2D models.
141The *pd-rel* category is a set of those parameters which give
142polydispersitiy as a portion of the value (so a 10% length dispersity
143would use a polydispersity value of 0.1) rather than absolute
144dispersity such as an angle plus or minus 15 degrees.
145
146The *volume* category lists the volume parameters in order for calls
147to volume within the kernel (used for volume normalization) and for
148calls to ER and VR for effective radius and volume ratio respectively.
149
150The *orientation* and *magnetic* categories list the orientation and
151magnetic parameters.  These are used by the sasview interface.  The
152blank category is for parameters such as scale which don't have any
153other marking.
154
155The doc string at the start of the kernel module will be used to
156construct the model documentation web pages.  Embedded figures should
157appear in the subdirectory "img" beside the model definition, and tagged
158with the kernel module name to avoid collision with other models.  Some
159file systems are case-sensitive, so only use lower case characters for
160file names and extensions.
161
162
163The function :func:`make` loads the metadata from the module and returns
164the kernel source.  The function :func:`doc` extracts the doc string
165and adds the parameter table to the top.  The function :func:`sources`
166returns a list of files required by the model.
167"""
168
169# TODO: identify model files which have changed since loading and reload them.
170
171__all__ = ["make, doc", "sources", "use_single"]
172
173import sys
174import os
175import os.path
176import re
177
178import numpy as np
179
180F64 = np.dtype('float64')
181F32 = np.dtype('float32')
182
183# Scale and background, which are parameters common to every form factor
184COMMON_PARAMETERS = [
185    [ "scale", "", 1, [0, np.inf], "", "Source intensity" ],
186    [ "background", "1/cm", 0, [0, np.inf], "", "Source background" ],
187    ]
188
189
190# Conversion from units defined in the parameter table for each model
191# to units displayed in the sphinx documentation.
192RST_UNITS = {
193    "Ang": "|Ang|",
194    "1/Ang^2": "|Ang^-2|",
195    "1e-6/Ang^2": "|1e-6Ang^-2|",
196    "degrees": "degree",
197    "1/cm": "|cm^-1|",
198    "": "None",
199    }
200
201# Headers for the parameters tables in th sphinx documentation
202PARTABLE_HEADERS = [
203    "Parameter",
204    "Description",
205    "Units",
206    "Default value",
207    ]
208
209# Minimum width for a default value (this is shorter than the column header
210# width, so will be ignored).
211PARTABLE_VALUE_WIDTH = 10
212
213# Header included before every kernel.
214# This makes sure that the appropriate math constants are defined, and does
215# whatever is required to make the kernel compile as pure C rather than
216# as an OpenCL kernel.
217KERNEL_HEADER = """\
218// GENERATED CODE --- DO NOT EDIT ---
219// Code is produced by sasmodels.gen from sasmodels/models/MODEL.c
220
221#ifdef __OPENCL_VERSION__
222# define USE_OPENCL
223#endif
224
225// If opencl is not available, then we are compiling a C function
226// Note: if using a C++ compiler, then define kernel as extern "C"
227#ifndef USE_OPENCL
228#  include <math.h>
229#  define global
230#  define local
231#  define constant const
232#  define kernel
233#  define SINCOS(angle,svar,cvar) do {svar=sin(angle);cvar=cos(angle);} while (0)
234#  define powr(a,b) pow(a,b)
235#else
236#  ifdef USE_SINCOS
237#    define SINCOS(angle,svar,cvar) svar=sincos(angle,&cvar)
238#  else
239#    define SINCOS(angle,svar,cvar) do {svar=sin(angle);cvar=cos(angle);} while (0)
240#  endif
241#endif
242
243// Standard mathematical constants:
244//   M_E, M_LOG2E, M_LOG10E, M_LN2, M_LN10, M_PI, M_PI_2=pi/2, M_PI_4=pi/4,
245//   M_1_PI=1/pi, M_2_PI=2/pi, M_2_SQRTPI=2/sqrt(pi), SQRT2, SQRT1_2=sqrt(1/2)
246// OpenCL defines M_constant_F for float constants, and nothing if double
247// is not enabled on the card, which is why these constants may be missing
248#ifndef M_PI
249#  define M_PI 3.141592653589793
250#endif
251#ifndef M_PI_2
252#  define M_PI_2 1.570796326794897
253#endif
254#ifndef M_PI_4
255#  define M_PI_4 0.7853981633974483
256#endif
257
258// Non-standard pi/180, used for converting between degrees and radians
259#ifndef M_PI_180
260#  define M_PI_180 0.017453292519943295
261#endif
262"""
263
264
265# The I(q) kernel and the I(qx, qy) kernel have one and two q parameters
266# respectively, so the template builder will need to do extra work to
267# declare, initialize and pass the q parameters.
268KERNEL_1D = {
269    'fn': "Iq",
270    'q_par_decl': "global const double *q,",
271    'qinit': "const double qi = q[i];",
272    'qcall': "qi",
273    'qwork': ["q"],
274    }
275
276KERNEL_2D = {
277    'fn': "Iqxy",
278    'q_par_decl': "global const double *qx,\n    global const double *qy,",
279    'qinit': "const double qxi = qx[i];\n    const double qyi = qy[i];",
280    'qcall': "qxi, qyi",
281    'qwork': ["qx", "qy"],
282    }
283
284# Generic kernel template for the polydispersity loop.
285# This defines the opencl kernel that is available to the host.  The same
286# structure is used for Iq and Iqxy kernels, so extra flexibility is needed
287# for q parameters.  The polydispersity loop is built elsewhere and
288# substituted into this template.
289KERNEL_TEMPLATE = """\
290kernel void %(name)s(
291    %(q_par_decl)s
292    global double *result,
293#ifdef USE_OPENCL
294    global double *loops_g,
295#else
296    const int Nq,
297#endif
298    local double *loops,
299    const double cutoff,
300    %(par_decl)s
301    )
302{
303#ifdef USE_OPENCL
304  // copy loops info to local memory
305  event_t e = async_work_group_copy(loops, loops_g, (%(pd_length)s)*2, 0);
306  wait_group_events(1, &e);
307
308  int i = get_global_id(0);
309  int Nq = get_global_size(0);
310#endif
311
312#ifdef USE_OPENCL
313  if (i < Nq)
314#else
315  #pragma omp parallel for
316  for (int i=0; i < Nq; i++)
317#endif
318  {
319    %(qinit)s
320    double ret=0.0, norm=0.0;
321    double vol=0.0, norm_vol=0.0;
322%(loops)s
323    if (vol*norm_vol != 0.0) {
324      ret *= norm_vol/vol;
325    }
326    result[i] = scale*ret/norm+background;
327  }
328}
329"""
330
331# Polydispersity loop level.
332# This pulls the parameter value and weight from the looping vector in order
333# in preperation for a nested loop.
334LOOP_OPEN="""\
335for (int %(name)s_i=0; %(name)s_i < N%(name)s; %(name)s_i++) {
336  const double %(name)s = loops[2*(%(name)s_i%(offset)s)];
337  const double %(name)s_w = loops[2*(%(name)s_i%(offset)s)+1];\
338"""
339
340# Polydispersity loop body.
341# This computes the weight, and if it is sufficient, calls the scattering
342# function and adds it to the total.  If there is a volume normalization,
343# it will also be added here.
344LOOP_BODY="""\
345const double weight = %(weight_product)s;
346if (weight > cutoff) {
347  const double I = %(fn)s(%(qcall)s, %(pcall)s);
348  if (I>=0.0) { // scattering cannot be negative
349    ret += weight*I%(sasview_spherical)s;
350    norm += weight;
351    %(volume_norm)s
352  }
353  //else { printf("exclude qx,qy,I:%%g,%%g,%%g\\n",%(qcall)s,I); }
354}
355//else { printf("exclude weight:%%g\\n",weight); }\
356"""
357
358# Use this when integrating over orientation
359SPHERICAL_CORRECTION="""\
360// Correction factor for spherical integration p(theta) I(q) sin(theta) dtheta
361double spherical_correction = (Ntheta>1 ? fabs(sin(M_PI_180*theta)) : 1.0);\
362"""
363# Use this to reproduce sasview behaviour
364SASVIEW_SPHERICAL_CORRECTION="""\
365// Correction factor for spherical integration p(theta) I(q) sin(theta) dtheta
366double spherical_correction = (Ntheta>1 ? fabs(cos(M_PI_180*theta))*M_PI_2 : 1.0);\
367"""
368
369# Volume normalization.
370# If there are "volume" polydispersity parameters, then these will be used
371# to call the form_volume function from the user supplied kernel, and accumulate
372# a normalized weight.
373VOLUME_NORM="""const double vol_weight = %(weight)s;
374    vol += vol_weight*form_volume(%(pars)s);
375    norm_vol += vol_weight;\
376"""
377
378# functions defined as strings in the .py module
379WORK_FUNCTION="""\
380double %(name)s(%(pars)s);
381double %(name)s(%(pars)s)
382{
383%(body)s
384}\
385"""
386
387# Documentation header for the module, giving the model name, its short
388# description and its parameter table.  The remainder of the doc comes
389# from the module docstring.
390DOC_HEADER=""".. _%(name)s:
391
392%(label)s
393=======================================================
394
395%(title)s
396
397%(parameters)s
398
399The returned value is scaled to units of |cm^-1|.
400
401%(docs)s
402"""
403
404def indent(s, depth):
405    """
406    Indent a string of text with *depth* additional spaces on each line.
407    """
408    spaces = " "*depth
409    sep = "\n"+spaces
410    return spaces + sep.join(s.split("\n"))
411
412
413def kernel_name(info, is_2D):
414    """
415    Name of the exported kernel symbol.
416    """
417    return info['name'] + "_" + ("Iqxy" if is_2D else "Iq")
418
419
420def use_single(source):
421    """
422    Convert code from double precision to single precision.
423    """
424    # Convert double keyword to float.  Accept an 'n' parameter for vector
425    # values, where n is 2, 4, 8 or 16. Assume complex numbers are represented
426    # as cdouble which is typedef'd to double2.
427    source = re.sub(r'(^|[^a-zA-Z0-9_]c?)double(([248]|16)?($|[^a-zA-Z0-9_]))',
428                    r'\1float\2', source)
429    # Convert floating point constants to single by adding 'f' to the end.
430    # OS/X driver complains if you don't do this.
431    source = re.sub(r'[^a-zA-Z_](\d*[.]\d+|\d+[.]\d*)([eE][+-]?\d+)?',
432                    r'\g<0>f', source)
433    return source
434
435
436def make_kernel(info, is_2D):
437    """
438    Build a kernel call from metadata supplied by the user.
439
440    *info* is the json object defined in the kernel file.
441
442    *form* is either "Iq" or "Iqxy".
443
444    This does not create a complete OpenCL kernel source, only the top
445    level kernel call with polydispersity and a call to the appropriate
446    Iq or Iqxy function.
447    """
448
449    # If we are building the Iqxy kernel, we need to propagate qx,qy
450    # parameters, otherwise we can
451    dim = "2d" if is_2D else "1d"
452    fixed_pars = info['partype']['fixed-'+dim]
453    pd_pars = info['partype']['pd-'+dim]
454    vol_pars = info['partype']['volume']
455    q_pars = KERNEL_2D if is_2D else KERNEL_1D
456    fn = q_pars['fn']
457
458    # Build polydispersity loops
459    depth = 4
460    offset = ""
461    loop_head = []
462    loop_end = []
463    for name in pd_pars:
464        subst = { 'name': name, 'offset': offset }
465        loop_head.append(indent(LOOP_OPEN%subst, depth))
466        loop_end.insert(0, (" "*depth) + "}")
467        offset += '+N'+name
468        depth += 2
469
470    # The volume parameters in the inner loop are used to call the volume()
471    # function in the kernel, with the parameters defined in vol_pars and the
472    # weight product defined in weight.  If there are no volume parameters,
473    # then there will be no volume normalization.
474    if vol_pars:
475        subst = {
476            'weight': "*".join(p+"_w" for p in vol_pars),
477            'pars': ", ".join(vol_pars),
478            }
479        volume_norm = VOLUME_NORM%subst
480    else:
481        volume_norm = ""
482
483    # Define the inner loop function call
484    # The parameters to the f(q,p1,p2...) call should occur in the same
485    # order as given in the parameter info structure.  This may be different
486    # from the parameter order in the call to the kernel since the kernel
487    # call places all fixed parameters before all polydisperse parameters.
488    fq_pars = [p[0] for p in info['parameters'][len(COMMON_PARAMETERS):]
489               if p[0] in set(fixed_pars+pd_pars)]
490    if False and "theta" in pd_pars:
491        spherical_correction = [indent(SPHERICAL_CORRECTION, depth)]
492        weights = [p+"_w" for p in pd_pars]+['spherical_correction']
493        sasview_spherical = ""
494    elif True and "theta" in pd_pars:
495        spherical_correction = [indent(SASVIEW_SPHERICAL_CORRECTION,depth)]
496        weights = [p+"_w" for p in pd_pars]
497        sasview_spherical = "*spherical_correction"
498    else:
499        spherical_correction = []
500        weights = [p+"_w" for p in pd_pars]
501        sasview_spherical = ""
502    subst = {
503        'weight_product': "*".join(weights),
504        'volume_norm': volume_norm,
505        'fn': fn,
506        'qcall': q_pars['qcall'],
507        'pcall': ", ".join(fq_pars), # skip scale and background
508        'sasview_spherical': sasview_spherical,
509        }
510    loop_body = [indent(LOOP_BODY%subst, depth)]
511    loops = "\n".join(loop_head+spherical_correction+loop_body+loop_end)
512
513    # declarations for non-pd followed by pd pars
514    # e.g.,
515    #     const double sld,
516    #     const int Nradius
517    fixed_par_decl = ",\n    ".join("const double %s"%p for p in fixed_pars)
518    pd_par_decl = ",\n    ".join("const int N%s"%p for p in pd_pars)
519    if fixed_par_decl and pd_par_decl:
520        par_decl = ",\n    ".join((fixed_par_decl, pd_par_decl))
521    elif fixed_par_decl:
522        par_decl = fixed_par_decl
523    else:
524        par_decl = pd_par_decl
525
526    # Finally, put the pieces together in the kernel.
527    subst = {
528        # kernel name is, e.g., cylinder_Iq
529        'name': kernel_name(info, is_2D),
530        # to declare, e.g., global double q[],
531        'q_par_decl': q_pars['q_par_decl'],
532        # to declare, e.g., double sld, int Nradius, int Nlength
533        'par_decl': par_decl,
534        # to copy global to local pd pars we need, e.g., Nradius+Nlength
535        'pd_length': "+".join('N'+p for p in pd_pars),
536        # the q initializers, e.g., double qi = q[i];
537        'qinit': q_pars['qinit'],
538        # the actual polydispersity loop
539        'loops': loops,
540        }
541    kernel = KERNEL_TEMPLATE%subst
542
543    # If the working function is defined in the kernel metadata as a
544    # string, translate the string to an actual function definition
545    # and put it before the kernel.
546    if info[fn]:
547        subst = {
548            'name': fn,
549            'pars': ", ".join("double "+p for p in q_pars['qwork']+fq_pars),
550            'body': info[fn],
551            }
552        kernel = "\n".join((WORK_FUNCTION%subst, kernel))
553    return kernel
554
555def make_partable(pars):
556    """
557    Generate the parameter table to include in the sphinx documentation.
558    """
559    pars = COMMON_PARAMETERS + pars
560    column_widths = [
561        max(len(p[0]) for p in pars),
562        max(len(p[-1]) for p in pars),
563        max(len(RST_UNITS[p[1]]) for p in pars),
564        PARTABLE_VALUE_WIDTH,
565        ]
566    column_widths = [max(w, len(h))
567                     for w,h in zip(column_widths, PARTABLE_HEADERS)]
568
569    sep = " ".join("="*w for w in column_widths)
570    lines = [
571        sep,
572        " ".join("%-*s"%(w,h) for w,h in zip(column_widths, PARTABLE_HEADERS)),
573        sep,
574        ]
575    for p in pars:
576        lines.append(" ".join([
577            "%-*s"%(column_widths[0],p[0]),
578            "%-*s"%(column_widths[1],p[-1]),
579            "%-*s"%(column_widths[2],RST_UNITS[p[1]]),
580            "%*g"%(column_widths[3],p[2]),
581            ]))
582    lines.append(sep)
583    return "\n".join(lines)
584
585def _search(search_path, filename):
586    """
587    Find *filename* in *search_path*.
588
589    Raises ValueError if file does not exist.
590    """
591    for path in search_path:
592        target = os.path.join(path, filename)
593        if os.path.exists(target):
594            return target
595    raise ValueError("%r not found in %s"%(filename, search_path))
596
597def sources(info):
598    """
599    Return a list of the sources file paths for the module.
600    """
601    from os.path import abspath, dirname, join as joinpath
602    search_path = [ dirname(info['filename']),
603                    abspath(joinpath(dirname(__file__),'models')) ]
604    return [_search(search_path, f) for f in info['source']]
605
606def make_model(info):
607    """
608    Generate the code for the kernel defined by info, using source files
609    found in the given search path.
610    """
611    source = [open(f).read() for f in sources(info)]
612    # If the form volume is defined as a string, then wrap it in a
613    # function definition and place it after the external sources but
614    # before the kernel functions.  If the kernel functions are strings,
615    # they will be translated in the make_kernel call.
616    if info['form_volume']:
617        subst = {
618            'name': "form_volume",
619            'pars': ", ".join("double "+p for p in info['partype']['volume']),
620            'body': info['form_volume'],
621            }
622        source.append(WORK_FUNCTION%subst)
623    kernel_Iq = make_kernel(info, is_2D=False)
624    kernel_Iqxy = make_kernel(info, is_2D=True)
625    kernel = "\n\n".join([KERNEL_HEADER]+source+[kernel_Iq, kernel_Iqxy])
626    return kernel
627
628def categorize_parameters(pars):
629    """
630    Build parameter categories out of the the parameter definitions.
631
632    Returns a dictionary of categories.
633    """
634    partype = {
635        'volume': [], 'orientation': [], 'magnetic': [], '': [],
636        'fixed-1d': [], 'fixed-2d': [], 'pd-1d': [], 'pd-2d': [],
637        'pd-rel': set(),
638    }
639
640    for p in pars:
641        name,ptype = p[0],p[4]
642        if ptype == 'volume':
643            partype['pd-1d'].append(name)
644            partype['pd-2d'].append(name)
645            partype['pd-rel'].add(name)
646        elif ptype == 'magnetic':
647            partype['fixed-2d'].append(name)
648        elif ptype == 'orientation':
649            partype['pd-2d'].append(name)
650        elif ptype == '':
651            partype['fixed-1d'].append(name)
652            partype['fixed-2d'].append(name)
653        else:
654            raise ValueError("unknown parameter type %r"%ptype)
655        partype[ptype].append(name)
656
657    return partype
658
659def make(kernel_module):
660    """
661    Build an OpenCL/ctypes function from the definition in *kernel_module*.
662
663    The module can be loaded with a normal python import statement if you
664    know which module you need, or with __import__('sasmodels.model.'+name)
665    if the name is in a string.
666    """
667    # TODO: allow Iq and Iqxy to be defined in python
668    from os.path import abspath
669    #print kernelfile
670    info = dict(
671        filename = abspath(kernel_module.__file__),
672        name = kernel_module.name,
673        title = kernel_module.title,
674        description = kernel_module.description,
675        parameters = COMMON_PARAMETERS + kernel_module.parameters,
676        source = getattr(kernel_module, 'source', []),
677        )
678    # Fill in attributes which default to None
679    info.update((k,getattr(kernel_module, k, None))
680                for k in ('ER', 'VR', 'form_volume', 'Iq', 'Iqxy'))
681    # Fill in the derived attributes
682    info['limits'] = dict((p[0],p[3]) for p in info['parameters'])
683    info['partype'] = categorize_parameters(info['parameters'])
684
685    source = make_model(info)
686
687    return source, info
688
689def doc(kernel_module):
690    """
691    Return the documentation for the model.
692    """
693    subst = dict(name=kernel_module.name.replace('_','-'),
694                 label=" ".join(kernel_module.name.split('_')).capitalize(),
695                 title=kernel_module.title,
696                 parameters=make_partable(kernel_module.parameters),
697                 docs=kernel_module.__doc__)
698    return DOC_HEADER%subst
699
700
701
702def demo_time():
703    import datetime
704    tic = datetime.datetime.now()
705    toc = lambda: (datetime.datetime.now()-tic).total_seconds()
706    path = os.path.dirname("__file__")
707    doc, c = make_model(os.path.join(path, "models", "cylinder.c"))
708    print "time:",toc()
709
710def demo():
711    from os.path import join as joinpath, dirname
712    c, info, doc = make_model(joinpath(dirname(__file__), "models", "cylinder.c"))
713    #print doc
714    #print c
715
716if __name__ == "__main__":
717    demo()
Note: See TracBrowser for help on using the repository browser.