""" Class interface to the model calculator. Calling a model is somewhat non-trivial since the functions called depend on the data type. For 1D data the *Iq* kernel needs to be called, for 2D data the *Iqxy* kernel needs to be called, and for SESANS data the *Iq* kernel needs to be called followed by a Hankel transform. Before the kernel is called an appropriate *q* calculation vector needs to be constructed. This is not the simple *q* vector where you have measured the data since the resolution calculation will require values beyond the range of the measured data. After the calculation the resolution calculator must be called to return the predicted value for each measured data point. :class:`DirectModel` is a callable object that takes *parameter=value* keyword arguments and returns the appropriate theory values for the data. :class:`DataMixin` does the real work of interpreting the data and calling the model calculator. This is used by :class:`DirectModel`, which uses direct parameter values and by :class:`bumps_model.Experiment` which wraps the parameter values in boxes so that the user can set fitting ranges, etc. on the individual parameters and send the model to the Bumps optimizers. """ from __future__ import print_function import numpy as np # type: ignore # TODO: fix sesans module from . import sesans # type: ignore from . import weights from . import resolution from . import resolution2d from .details import build_details try: from typing import Optional, Dict, Tuple except ImportError: pass else: from .data import Data from .kernel import Kernel, KernelModel from .modelinfo import Parameter, ParameterSet def call_kernel(calculator, pars, cutoff=0., mono=False): # type: (Kernel, ParameterSet, float, bool) -> np.ndarray """ Call *kernel* returned from *model.make_kernel* with parameters *pars*. *cutoff* is the limiting value for the product of dispersion weights used to perform the multidimensional dispersion calculation more quickly at a slight cost to accuracy. The default value of *cutoff=0* integrates over the entire dispersion cube. Using *cutoff=1e-5* can be 50% faster, but with an error of about 1%, which is usually less than the measurement uncertainty. *mono* is True if polydispersity should be set to none on all parameters. """ parameters = calculator.info.parameters if mono: active = lambda name: False elif calculator.dim == '1d': active = lambda name: name in parameters.pd_1d elif calculator.dim == '2d': active = lambda name: name in parameters.pd_2d else: active = lambda name: True #print("pars",[p.id for p in parameters.call_parameters]) vw_pairs = [(get_weights(p, pars) if active(p.name) else ([pars.get(p.name, p.default)], [1.0])) for p in parameters.call_parameters] call_details, values, is_magnetic = build_details(calculator, vw_pairs) #print("values:", values) return calculator(call_details, values, cutoff, is_magnetic) def get_weights(parameter, values): # type: (Parameter, Dict[str, float]) -> Tuple[np.ndarray, np.ndarray] """ Generate the distribution for parameter *name* given the parameter values in *pars*. Uses "name", "name_pd", "name_pd_type", "name_pd_n", "name_pd_sigma" from the *pars* dictionary for parameter value and parameter dispersion. """ value = float(values.get(parameter.name, parameter.default)) relative = parameter.relative_pd limits = parameter.limits disperser = values.get(parameter.name+'_pd_type', 'gaussian') npts = values.get(parameter.name+'_pd_n', 0) width = values.get(parameter.name+'_pd', 0.0) nsigma = values.get(parameter.name+'_pd_nsigma', 3.0) if npts == 0 or width == 0: return [value], [1.0] value, weight = weights.get_weights( disperser, npts, width, nsigma, value, limits, relative) return value, weight / np.sum(weight) class DataMixin(object): """ DataMixin captures the common aspects of evaluating a SAS model for a particular data set, including calculating Iq and evaluating the resolution function. It is used in particular by :class:`DirectModel`, which evaluates a SAS model parameters as key word arguments to the calculator method, and by :class:`bumps_model.Experiment`, which wraps the model and data for use with the Bumps fitting engine. It is not currently used by :class:`sasview_model.SasviewModel` since this will require a number of changes to SasView before we can do it. :meth:`_interpret_data` initializes the data structures necessary to manage the calculations. This sets attributes in the child class such as *data_type* and *resolution*. :meth:`_calc_theory` evaluates the model at the given control values. :meth:`_set_data` sets the intensity data in the data object, possibly with random noise added. This is useful for simulating a dataset with the results from :meth:`_calc_theory`. """ def _interpret_data(self, data, model): # type: (Data, KernelModel) -> None # pylint: disable=attribute-defined-outside-init self._data = data self._model = model # interpret data if hasattr(data, 'lam'): self.data_type = 'sesans' elif hasattr(data, 'qx_data'): self.data_type = 'Iqxy' elif getattr(data, 'oriented', False): self.data_type = 'Iq-oriented' else: self.data_type = 'Iq' if self.data_type == 'sesans': q = sesans.make_q(data.sample.zacceptance, data.Rmax) index = slice(None, None) res = None if data.y is not None: Iq, dIq = data.y, data.dy else: Iq, dIq = None, None #self._theory = np.zeros_like(q) q_vectors = [q] q_mono = sesans.make_all_q(data) elif self.data_type == 'Iqxy': #if not model.info.parameters.has_2d: # raise ValueError("not 2D without orientation or magnetic parameters") q = np.sqrt(data.qx_data**2 + data.qy_data**2) qmin = getattr(data, 'qmin', 1e-16) qmax = getattr(data, 'qmax', np.inf) accuracy = getattr(data, 'accuracy', 'Low') index = ~data.mask & (q >= qmin) & (q <= qmax) if data.data is not None: index &= ~np.isnan(data.data) Iq = data.data[index] dIq = data.err_data[index] else: Iq, dIq = None, None res = resolution2d.Pinhole2D(data=data, index=index, nsigma=3.0, accuracy=accuracy) #self._theory = np.zeros_like(self.Iq) q_vectors = res.q_calc q_mono = [] elif self.data_type == 'Iq': index = (data.x >= data.qmin) & (data.x <= data.qmax) if data.y is not None: index &= ~np.isnan(data.y) Iq = data.y[index] dIq = data.dy[index] else: Iq, dIq = None, None if getattr(data, 'dx', None) is not None: q, dq = data.x[index], data.dx[index] if (dq > 0).any(): res = resolution.Pinhole1D(q, dq) else: res = resolution.Perfect1D(q) elif (getattr(data, 'dxl', None) is not None and getattr(data, 'dxw', None) is not None): res = resolution.Slit1D(data.x[index], qx_width=data.dxl[index], qy_width=data.dxw[index]) else: res = resolution.Perfect1D(data.x[index]) #self._theory = np.zeros_like(self.Iq) q_vectors = [res.q_calc] q_mono = [] elif self.data_type == 'Iq-oriented': index = (data.x >= data.qmin) & (data.x <= data.qmax) if data.y is not None: index &= ~np.isnan(data.y) Iq = data.y[index] dIq = data.dy[index] else: Iq, dIq = None, None if (getattr(data, 'dxl', None) is None or getattr(data, 'dxw', None) is None): raise ValueError("oriented sample with 1D data needs slit resolution") res = resolution2d.Slit2D(data.x[index], qx_width=data.dxw[index], qy_width=data.dxl[index]) q_vectors = res.q_calc q_mono = [] else: raise ValueError("Unknown data type") # never gets here # Remember function inputs so we can delay loading the function and # so we can save/restore state self._kernel_inputs = q_vectors self._kernel_mono_inputs = q_mono self._kernel = None self.Iq, self.dIq, self.index = Iq, dIq, index self.resolution = res def _set_data(self, Iq, noise=None): # type: (np.ndarray, Optional[float]) -> None # pylint: disable=attribute-defined-outside-init if noise is not None: self.dIq = Iq*noise*0.01 dy = self.dIq y = Iq + np.random.randn(*dy.shape) * dy self.Iq = y if self.data_type in ('Iq', 'Iq-oriented'): self._data.dy[self.index] = dy self._data.y[self.index] = y elif self.data_type == 'Iqxy': self._data.data[self.index] = y elif self.data_type == 'sesans': self._data.y[self.index] = y else: raise ValueError("Unknown model") def _calc_theory(self, pars, cutoff=0.0): # type: (ParameterSet, float) -> np.ndarray if self._kernel is None: self._kernel = self._model.make_kernel(self._kernel_inputs) self._kernel_mono = (self._model.make_kernel(self._kernel_mono_inputs) if self._kernel_mono_inputs else None) Iq_calc = call_kernel(self._kernel, pars, cutoff=cutoff) # TODO: may want to plot the raw Iq for other than oriented usans self.Iq_calc = None if self.data_type == 'sesans': Iq_mono = (call_kernel(self._kernel_mono, pars, mono=True) if self._kernel_mono_inputs else None) result = sesans.transform(self._data, self._kernel_inputs[0], Iq_calc, self._kernel_mono_inputs, Iq_mono) else: result = self.resolution.apply(Iq_calc) if hasattr(self.resolution, 'nx'): self.Iq_calc = ( self.resolution.qx_calc, self.resolution.qy_calc, np.reshape(Iq_calc, (self.resolution.ny, self.resolution.nx)) ) return result class DirectModel(DataMixin): """ Create a calculator object for a model. *data* is 1D SAS, 2D SAS or SESANS data *model* is a model calculator return from :func:`generate.load_model` *cutoff* is the polydispersity weight cutoff. """ def __init__(self, data, model, cutoff=1e-5): # type: (Data, KernelModel, float) -> None self.model = model self.cutoff = cutoff # Note: _interpret_data defines the model attributes self._interpret_data(data, model) def __call__(self, **pars): # type: (**float) -> np.ndarray return self._calc_theory(pars, cutoff=self.cutoff) def simulate_data(self, noise=None, **pars): # type: (Optional[float], **float) -> None """ Generate simulated data for the model. """ Iq = self.__call__(**pars) self._set_data(Iq, noise=noise) def main(): # type: () -> None """ Program to evaluate a particular model at a set of q values. """ import sys from .data import empty_data1D, empty_data2D from .core import load_model_info, build_model if len(sys.argv) < 3: print("usage: python -m sasmodels.direct_model modelname (q|qx,qy) par=val ...") sys.exit(1) model_name = sys.argv[1] call = sys.argv[2].upper() if call != "ER_VR": try: values = [float(v) for v in call.split(',')] except Exception: values = [] if len(values) == 1: q, = values data = empty_data1D([q]) elif len(values) == 2: qx, qy = values data = empty_data2D([qx], [qy]) else: print("use q or qx,qy or ER or VR") sys.exit(1) else: data = empty_data1D([0.001]) # Data not used in ER/VR model_info = load_model_info(model_name) model = build_model(model_info) calculator = DirectModel(data, model) pars = dict((k, float(v)) for pair in sys.argv[3:] for k, v in [pair.split('=')]) if call == "ER_VR": print(calculator.ER_VR(**pars)) else: Iq = calculator(**pars) print(Iq[0]) if __name__ == "__main__": main()