source: sasmodels/sasmodels/core.py @ 47fb816

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 47fb816 was 47fb816, checked in by Paul Kienzle <pkienzle@…>, 6 years ago

Merge branch 'master' into cuda-test

  • Property mode set to 100644
File size: 14.4 KB
Line 
1"""
2Core model handling routines.
3"""
4from __future__ import print_function
5
6__all__ = [
7    "list_models", "load_model", "load_model_info",
8    "build_model", "precompile_dlls",
9    ]
10
11import os
12from os.path import basename, join as joinpath
13from glob import glob
14import re
15
16# Set "SAS_OPENCL=cuda" in the environment to use the CUDA rather than OpenCL
17USE_CUDA = os.environ.get("SAS_OPENCL", "") == "cuda"
18
19import numpy as np # type: ignore
20
21from . import generate
22from . import modelinfo
23from . import product
24from . import mixture
25from . import kernelpy
26if USE_CUDA:
27    from . import kernelcuda
28else:
29    from . import kernelcl
30from . import kerneldll
31from . import custom
32
33# pylint: disable=unused-import
34try:
35    from typing import List, Union, Optional, Any
36    from .kernel import KernelModel
37    from .modelinfo import ModelInfo
38except ImportError:
39    pass
40# pylint: enable=unused-import
41
42CUSTOM_MODEL_PATH = os.environ.get('SAS_MODELPATH', "")
43if CUSTOM_MODEL_PATH == "":
44    CUSTOM_MODEL_PATH = joinpath(os.path.expanduser("~"), ".sasmodels", "custom_models")
45    #if not os.path.isdir(CUSTOM_MODEL_PATH):
46    #    os.makedirs(CUSTOM_MODEL_PATH)
47
48# TODO: refactor composite model support
49# The current load_model_info/build_model does not reuse existing model
50# definitions when loading a composite model, instead reloading and
51# rebuilding the kernel for each component model in the expression.  This
52# is fine in a scripting environment where the model is built when the script
53# starts and is thrown away when the script ends, but may not be the best
54# solution in a long-lived application.  This affects the following functions:
55#
56#    load_model
57#    load_model_info
58#    build_model
59
60KINDS = ("all", "py", "c", "double", "single", "opencl", "1d", "2d",
61         "nonmagnetic", "magnetic")
62def list_models(kind=None):
63    # type: (str) -> List[str]
64    """
65    Return the list of available models on the model path.
66
67    *kind* can be one of the following:
68
69        * all: all models
70        * py: python models only
71        * c: compiled models only
72        * single: models which support single precision
73        * double: models which require double precision
74        * opencl: controls if OpenCL is supperessed
75        * 1d: models which are 1D only, or 2D using abs(q)
76        * 2d: models which can be 2D
77        * magnetic: models with an sld
78        * nommagnetic: models without an sld
79
80    For multiple conditions, combine with plus.  For example, *c+single+2d*
81    would return all oriented models implemented in C which can be computed
82    accurately with single precision arithmetic.
83    """
84    if kind and any(k not in KINDS for k in kind.split('+')):
85        raise ValueError("kind not in " + ", ".join(KINDS))
86    files = sorted(glob(joinpath(generate.MODEL_PATH, "[a-zA-Z]*.py")))
87    available_models = [basename(f)[:-3] for f in files]
88    if kind and '+' in kind:
89        all_kinds = kind.split('+')
90        condition = lambda name: all(_matches(name, k) for k in all_kinds)
91    else:
92        condition = lambda name: _matches(name, kind)
93    selected = [name for name in available_models if condition(name)]
94
95    return selected
96
97def _matches(name, kind):
98    if kind is None or kind == "all":
99        return True
100    info = load_model_info(name)
101    pars = info.parameters.kernel_parameters
102    if kind == "py" and callable(info.Iq):
103        return True
104    elif kind == "c" and not callable(info.Iq):
105        return True
106    elif kind == "double" and not info.single:
107        return True
108    elif kind == "single" and info.single:
109        return True
110    elif kind == "opencl" and info.opencl:
111        return True
112    elif kind == "2d" and any(p.type == 'orientation' for p in pars):
113        return True
114    elif kind == "1d" and all(p.type != 'orientation' for p in pars):
115        return True
116    elif kind == "magnetic" and any(p.type == 'sld' for p in pars):
117        return True
118    elif kind == "nonmagnetic" and any(p.type != 'sld' for p in pars):
119        return True
120    return False
121
122def load_model(model_name, dtype=None, platform='ocl'):
123    # type: (str, str, str) -> KernelModel
124    """
125    Load model info and build model.
126
127    *model_name* is the name of the model, or perhaps a model expression
128    such as sphere*hardsphere or sphere+cylinder.
129
130    *dtype* and *platform* are given by :func:`build_model`.
131    """
132    return build_model(load_model_info(model_name),
133                       dtype=dtype, platform=platform)
134
135def load_model_info(model_string):
136    # type: (str) -> modelinfo.ModelInfo
137    """
138    Load a model definition given the model name.
139
140    *model_string* is the name of the model, or perhaps a model expression
141    such as sphere*cylinder or sphere+cylinder. Use '@' for a structure
142    factor product, e.g. sphere@hardsphere. Custom models can be specified by
143    prefixing the model name with 'custom.', e.g. 'custom.MyModel+sphere'.
144
145    This returns a handle to the module defining the model.  This can be
146    used with functions in generate to build the docs or extract model info.
147    """
148    if "+" in model_string:
149        parts = [load_model_info(part)
150                 for part in model_string.split("+")]
151        return mixture.make_mixture_info(parts, operation='+')
152    elif "*" in model_string:
153        parts = [load_model_info(part)
154                 for part in model_string.split("*")]
155        return mixture.make_mixture_info(parts, operation='*')
156    elif "@" in model_string:
157        p_info, q_info = [load_model_info(part)
158                          for part in model_string.split("@")]
159        return product.make_product_info(p_info, q_info)
160    # We are now dealing with a pure model
161    elif "custom." in model_string:
162        pattern = "custom.([A-Za-z0-9_-]+)"
163        result = re.match(pattern, model_string)
164        if result is None:
165            raise ValueError("Model name in invalid format: " + model_string)
166        model_name = result.group(1)
167        # Use ModelName to find the path to the custom model file
168        model_path = joinpath(CUSTOM_MODEL_PATH, model_name + ".py")
169        if not os.path.isfile(model_path):
170            raise ValueError("The model file {} doesn't exist".format(model_path))
171        kernel_module = custom.load_custom_kernel_module(model_path)
172        return modelinfo.make_model_info(kernel_module)
173    kernel_module = generate.load_kernel_module(model_string)
174    return modelinfo.make_model_info(kernel_module)
175
176
177def build_model(model_info, dtype=None, platform="ocl"):
178    # type: (modelinfo.ModelInfo, str, str) -> KernelModel
179    """
180    Prepare the model for the default execution platform.
181
182    This will return an OpenCL model, a DLL model or a python model depending
183    on the model and the computing platform.
184
185    *model_info* is the model definition structure returned from
186    :func:`load_model_info`.
187
188    *dtype* indicates whether the model should use single or double precision
189    for the calculation.  Choices are 'single', 'double', 'quad', 'half',
190    or 'fast'.  If *dtype* ends with '!', then force the use of the DLL rather
191    than OpenCL for the calculation.
192
193    *platform* should be "dll" to force the dll to be used for C models,
194    otherwise it uses the default "ocl".
195    """
196    composition = model_info.composition
197    if composition is not None:
198        composition_type, parts = composition
199        models = [build_model(p, dtype=dtype, platform=platform) for p in parts]
200        if composition_type == 'mixture':
201            return mixture.MixtureModel(model_info, models)
202        elif composition_type == 'product':
203            P, S = models
204            return product.ProductModel(model_info, P, S)
205        else:
206            raise ValueError('unknown mixture type %s'%composition_type)
207
208    # If it is a python model, return it immediately
209    if callable(model_info.Iq):
210        return kernelpy.PyModel(model_info)
211
212    numpy_dtype, fast, platform = parse_dtype(model_info, dtype, platform)
213
214    source = generate.make_source(model_info)
215    if platform == "dll":
216        #print("building dll", numpy_dtype)
217        return kerneldll.load_dll(source['dll'], model_info, numpy_dtype)
218    elif USE_CUDA:
219        #print("building cuda", numpy_dtype)
220        return kernelcuda.GpuModel(source, model_info, numpy_dtype, fast=fast)
221    else:
222        #print("building ocl", numpy_dtype)
223        return kernelcl.GpuModel(source, model_info, numpy_dtype, fast=fast)
224
225def precompile_dlls(path, dtype="double"):
226    # type: (str, str) -> List[str]
227    """
228    Precompile the dlls for all builtin models, returning a list of dll paths.
229
230    *path* is the directory in which to save the dlls.  It will be created if
231    it does not already exist.
232
233    This can be used when build the windows distribution of sasmodels
234    which may be missing the OpenCL driver and the dll compiler.
235    """
236    numpy_dtype = np.dtype(dtype)
237    if not os.path.exists(path):
238        os.makedirs(path)
239    compiled_dlls = []
240    for model_name in list_models():
241        model_info = load_model_info(model_name)
242        if not callable(model_info.Iq):
243            source = generate.make_source(model_info)['dll']
244            old_path = kerneldll.SAS_DLL_PATH
245            try:
246                kerneldll.SAS_DLL_PATH = path
247                dll = kerneldll.make_dll(source, model_info, dtype=numpy_dtype)
248            finally:
249                kerneldll.SAS_DLL_PATH = old_path
250            compiled_dlls.append(dll)
251    return compiled_dlls
252
253def parse_dtype(model_info, dtype=None, platform=None):
254    # type: (ModelInfo, str, str) -> (np.dtype, bool, str)
255    """
256    Interpret dtype string, returning np.dtype and fast flag.
257
258    Possible types include 'half', 'single', 'double' and 'quad'.  If the
259    type is 'fast', then this is equivalent to dtype 'single' but using
260    fast native functions rather than those with the precision level
261    guaranteed by the OpenCL standard.  'default' will choose the appropriate
262    default for the model and platform.
263
264    Platform preference can be specfied ("ocl" vs "dll"), with the default
265    being OpenCL if it is availabe.  If the dtype name ends with '!' then
266    platform is forced to be DLL rather than OpenCL.
267
268    This routine ignores the preferences within the model definition.  This
269    is by design.  It allows us to test models in single precision even when
270    we have flagged them as requiring double precision so we can easily check
271    the performance on different platforms without having to change the model
272    definition.
273    """
274    # Assign default platform, overriding ocl with dll if OpenCL is unavailable
275    # If opencl=False OpenCL is switched off
276
277    if platform is None:
278        platform = "ocl"
279    if not model_info.opencl:
280        platform = "dll"
281    elif USE_CUDA:
282        if not kernelcuda.use_cuda():
283            platform = "dll"
284    else:
285        if not kernelcl.use_opencl():
286            platform = "dll"
287
288    # Check if type indicates dll regardless of which platform is given
289    if dtype is not None and dtype.endswith('!'):
290        platform = "dll"
291        dtype = dtype[:-1]
292
293    # Convert special type names "half", "fast", and "quad"
294    fast = (dtype == "fast")
295    if fast:
296        dtype = "single"
297    elif dtype == "quad":
298        dtype = "longdouble"
299    elif dtype == "half":
300        dtype = "float16"
301
302    # Convert dtype string to numpy dtype.
303    if dtype is None or dtype == "default":
304        numpy_dtype = (generate.F32 if platform == "ocl" and model_info.single
305                       else generate.F64)
306    else:
307        numpy_dtype = np.dtype(dtype)
308
309    # Make sure that the type is supported by opencl, otherwise use dll
310    if platform == "ocl":
311        if USE_CUDA:
312            env = kernelcuda.environment()
313        else:
314            env = kernelcl.environment()
315        if not env.has_type(numpy_dtype):
316            platform = "dll"
317            if dtype is None:
318                numpy_dtype = generate.F64
319
320    return numpy_dtype, fast, platform
321
322def list_models_main():
323    # type: () -> None
324    """
325    Run list_models as a main program.  See :func:`list_models` for the
326    kinds of models that can be requested on the command line.
327    """
328    import sys
329    kind = sys.argv[1] if len(sys.argv) > 1 else "all"
330    print("\n".join(list_models(kind)))
331
332def test_composite_order():
333    def test_models(fst, snd):
334        """Confirm that two models produce the same parameters"""
335        fst = load_model(fst)
336        snd = load_model(snd)
337        # Un-disambiguate parameter names so that we can check if the same
338        # parameters are in a pair of composite models. Since each parameter in
339        # the mixture model is tagged as e.g., A_sld, we ought to use a
340        # regex subsitution s/^[A-Z]+_/_/, but removing all uppercase letters
341        # is good enough.
342        fst = [[x for x in p.name if x == x.lower()] for p in fst.info.parameters.kernel_parameters]
343        snd = [[x for x in p.name if x == x.lower()] for p in snd.info.parameters.kernel_parameters]
344        assert sorted(fst) == sorted(snd), "{} != {}".format(fst, snd)
345
346    def build_test(first, second):
347        test = lambda description: test_models(first, second)
348        description = first + " vs. " + second
349        return test, description
350
351    yield build_test(
352        "cylinder+sphere",
353        "sphere+cylinder")
354    yield build_test(
355        "cylinder*sphere",
356        "sphere*cylinder")
357    yield build_test(
358        "cylinder@hardsphere*sphere",
359        "sphere*cylinder@hardsphere")
360    yield build_test(
361        "barbell+sphere*cylinder@hardsphere",
362        "sphere*cylinder@hardsphere+barbell")
363    yield build_test(
364        "barbell+cylinder@hardsphere*sphere",
365        "cylinder@hardsphere*sphere+barbell")
366    yield build_test(
367        "barbell+sphere*cylinder@hardsphere",
368        "barbell+cylinder@hardsphere*sphere")
369    yield build_test(
370        "sphere*cylinder@hardsphere+barbell",
371        "cylinder@hardsphere*sphere+barbell")
372    yield build_test(
373        "barbell+sphere*cylinder@hardsphere",
374        "cylinder@hardsphere*sphere+barbell")
375    yield build_test(
376        "barbell+cylinder@hardsphere*sphere",
377        "sphere*cylinder@hardsphere+barbell")
378
379def test_composite():
380    # type: () -> None
381    """Check that model load works"""
382    #Test the the model produces the parameters that we would expect
383    model = load_model("cylinder@hardsphere*sphere")
384    actual = [p.name for p in model.info.parameters.kernel_parameters]
385    target = ("sld sld_solvent radius length theta phi volfraction"
386              " A_sld A_sld_solvent A_radius").split()
387    assert target == actual, "%s != %s"%(target, actual)
388
389if __name__ == "__main__":
390    list_models_main()
Note: See TracBrowser for help on using the repository browser.