source: sasmodels/sasmodels/compare.py @ 256dfe1

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 256dfe1 was 256dfe1, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

allow comparison of multiplicity models with sasview 3.x

  • Property mode set to 100755
File size: 34.7 KB
Line 
1#!/usr/bin/env python
2# -*- coding: utf-8 -*-
3"""
4Program to compare models using different compute engines.
5
6This program lets you compare results between OpenCL and DLL versions
7of the code and between precision (half, fast, single, double, quad),
8where fast precision is single precision using native functions for
9trig, etc., and may not be completely IEEE 754 compliant.  This lets
10make sure that the model calculations are stable, or if you need to
11tag the model as double precision only.
12
13Run using ./compare.sh (Linux, Mac) or compare.bat (Windows) in the
14sasmodels root to see the command line options.
15
16Note that there is no way within sasmodels to select between an
17OpenCL CPU device and a GPU device, but you can do so by setting the
18PYOPENCL_CTX environment variable ahead of time.  Start a python
19interpreter and enter::
20
21    import pyopencl as cl
22    cl.create_some_context()
23
24This will prompt you to select from the available OpenCL devices
25and tell you which string to use for the PYOPENCL_CTX variable.
26On Windows you will need to remove the quotes.
27"""
28
29from __future__ import print_function
30
31import sys
32import math
33import datetime
34import traceback
35
36import numpy as np  # type: ignore
37
38from . import core
39from . import kerneldll
40from .data import plot_theory, empty_data1D, empty_data2D
41from .direct_model import DirectModel
42from .convert import revert_name, revert_pars, constrain_new_to_old
43
44try:
45    from typing import Optional, Dict, Any, Callable, Tuple
46except:
47    pass
48else:
49    from .modelinfo import ModelInfo, Parameter, ParameterSet
50    from .data import Data
51    Calculator = Callable[[float], np.ndarray]
52
53USAGE = """
54usage: compare.py model N1 N2 [options...] [key=val]
55
56Compare the speed and value for a model between the SasView original and the
57sasmodels rewrite.
58
59model is the name of the model to compare (see below).
60N1 is the number of times to run sasmodels (default=1).
61N2 is the number times to run sasview (default=1).
62
63Options (* for default):
64
65    -plot*/-noplot plots or suppress the plot of the model
66    -lowq*/-midq/-highq/-exq use q values up to 0.05, 0.2, 1.0, 10.0
67    -nq=128 sets the number of Q points in the data set
68    -zero indicates that q=0 should be included
69    -1d*/-2d computes 1d or 2d data
70    -preset*/-random[=seed] preset or random parameters
71    -mono/-poly* force monodisperse/polydisperse
72    -cutoff=1e-5* cutoff value for including a point in polydispersity
73    -pars/-nopars* prints the parameter set or not
74    -abs/-rel* plot relative or absolute error
75    -linear/-log*/-q4 intensity scaling
76    -hist/-nohist* plot histogram of relative error
77    -res=0 sets the resolution width dQ/Q if calculating with resolution
78    -accuracy=Low accuracy of the resolution calculation Low, Mid, High, Xhigh
79    -edit starts the parameter explorer
80    -default/-demo* use demo vs default parameters
81
82Any two calculation engines can be selected for comparison:
83
84    -single/-double/-half/-fast sets an OpenCL calculation engine
85    -single!/-double!/-quad! sets an OpenMP calculation engine
86    -sasview sets the sasview calculation engine
87
88The default is -single -sasview.  Note that the interpretation of quad
89precision depends on architecture, and may vary from 64-bit to 128-bit,
90with 80-bit floats being common (1e-19 precision).
91
92Key=value pairs allow you to set specific values for the model parameters.
93"""
94
95# Update docs with command line usage string.   This is separate from the usual
96# doc string so that we can display it at run time if there is an error.
97# lin
98__doc__ = (__doc__  # pylint: disable=redefined-builtin
99           + """
100Program description
101-------------------
102
103"""
104           + USAGE)
105
106kerneldll.ALLOW_SINGLE_PRECISION_DLLS = True
107
108# CRUFT python 2.6
109if not hasattr(datetime.timedelta, 'total_seconds'):
110    def delay(dt):
111        """Return number date-time delta as number seconds"""
112        return dt.days * 86400 + dt.seconds + 1e-6 * dt.microseconds
113else:
114    def delay(dt):
115        """Return number date-time delta as number seconds"""
116        return dt.total_seconds()
117
118
119class push_seed(object):
120    """
121    Set the seed value for the random number generator.
122
123    When used in a with statement, the random number generator state is
124    restored after the with statement is complete.
125
126    :Parameters:
127
128    *seed* : int or array_like, optional
129        Seed for RandomState
130
131    :Example:
132
133    Seed can be used directly to set the seed::
134
135        >>> from numpy.random import randint
136        >>> push_seed(24)
137        <...push_seed object at...>
138        >>> print(randint(0,1000000,3))
139        [242082    899 211136]
140
141    Seed can also be used in a with statement, which sets the random
142    number generator state for the enclosed computations and restores
143    it to the previous state on completion::
144
145        >>> with push_seed(24):
146        ...    print(randint(0,1000000,3))
147        [242082    899 211136]
148
149    Using nested contexts, we can demonstrate that state is indeed
150    restored after the block completes::
151
152        >>> with push_seed(24):
153        ...    print(randint(0,1000000))
154        ...    with push_seed(24):
155        ...        print(randint(0,1000000,3))
156        ...    print(randint(0,1000000))
157        242082
158        [242082    899 211136]
159        899
160
161    The restore step is protected against exceptions in the block::
162
163        >>> with push_seed(24):
164        ...    print(randint(0,1000000))
165        ...    try:
166        ...        with push_seed(24):
167        ...            print(randint(0,1000000,3))
168        ...            raise Exception()
169        ...    except Exception:
170        ...        print("Exception raised")
171        ...    print(randint(0,1000000))
172        242082
173        [242082    899 211136]
174        Exception raised
175        899
176    """
177    def __init__(self, seed=None):
178        # type: (Optional[int]) -> None
179        self._state = np.random.get_state()
180        np.random.seed(seed)
181
182    def __enter__(self):
183        # type: () -> None
184        pass
185
186    def __exit__(self, type, value, traceback):
187        # type: (Any, BaseException, Any) -> None
188        # TODO: better typing for __exit__ method
189        np.random.set_state(self._state)
190
191def tic():
192    # type: () -> Callable[[], float]
193    """
194    Timer function.
195
196    Use "toc=tic()" to start the clock and "toc()" to measure
197    a time interval.
198    """
199    then = datetime.datetime.now()
200    return lambda: delay(datetime.datetime.now() - then)
201
202
203def set_beam_stop(data, radius, outer=None):
204    # type: (Data, float, float) -> None
205    """
206    Add a beam stop of the given *radius*.  If *outer*, make an annulus.
207
208    Note: this function does not require sasview
209    """
210    if hasattr(data, 'qx_data'):
211        q = np.sqrt(data.qx_data**2 + data.qy_data**2)
212        data.mask = (q < radius)
213        if outer is not None:
214            data.mask |= (q >= outer)
215    else:
216        data.mask = (data.x < radius)
217        if outer is not None:
218            data.mask |= (data.x >= outer)
219
220
221def parameter_range(p, v):
222    # type: (str, float) -> Tuple[float, float]
223    """
224    Choose a parameter range based on parameter name and initial value.
225    """
226    # process the polydispersity options
227    if p.endswith('_pd_n'):
228        return 0., 100.
229    elif p.endswith('_pd_nsigma'):
230        return 0., 5.
231    elif p.endswith('_pd_type'):
232        raise ValueError("Cannot return a range for a string value")
233    elif any(s in p for s in ('theta', 'phi', 'psi')):
234        # orientation in [-180,180], orientation pd in [0,45]
235        if p.endswith('_pd'):
236            return 0., 45.
237        else:
238            return -180., 180.
239    elif p.endswith('_pd'):
240        return 0., 1.
241    elif 'sld' in p:
242        return -0.5, 10.
243    elif p == 'background':
244        return 0., 10.
245    elif p == 'scale':
246        return 0., 1.e3
247    elif v < 0.:
248        return 2.*v, -2.*v
249    else:
250        return 0., (2.*v if v > 0. else 1.)
251
252
253def _randomize_one(model_info, p, v):
254    # type: (ModelInfo, str, float) -> float
255    # type: (ModelInfo, str, str) -> str
256    """
257    Randomize a single parameter.
258    """
259    if any(p.endswith(s) for s in ('_pd', '_pd_n', '_pd_nsigma', '_pd_type')):
260        return v
261
262    # Find the parameter definition
263    for par in model_info.parameters.call_parameters:
264        if par.name == p:
265            break
266    else:
267        raise ValueError("unknown parameter %r"%p)
268
269    if len(par.limits) > 2:  # choice list
270        return np.random.randint(len(par.limits))
271
272    limits = par.limits
273    if not np.isfinite(limits).all():
274        low, high = parameter_range(p, v)
275        limits = (max(limits[0], low), min(limits[1], high))
276
277    return np.random.uniform(*limits)
278
279
280def randomize_pars(model_info, pars, seed=None):
281    # type: (ModelInfo, ParameterSet, int) -> ParameterSet
282    """
283    Generate random values for all of the parameters.
284
285    Valid ranges for the random number generator are guessed from the name of
286    the parameter; this will not account for constraints such as cap radius
287    greater than cylinder radius in the capped_cylinder model, so
288    :func:`constrain_pars` needs to be called afterward..
289    """
290    with push_seed(seed):
291        # Note: the sort guarantees order `of calls to random number generator
292        random_pars = dict((p, _randomize_one(model_info, p, v))
293                           for p, v in sorted(pars.items()))
294    return random_pars
295
296def constrain_pars(model_info, pars):
297    # type: (ModelInfo, ParameterSet) -> None
298    """
299    Restrict parameters to valid values.
300
301    This includes model specific code for models such as capped_cylinder
302    which need to support within model constraints (cap radius more than
303    cylinder radius in this case).
304
305    Warning: this updates the *pars* dictionary in place.
306    """
307    name = model_info.id
308    # if it is a product model, then just look at the form factor since
309    # none of the structure factors need any constraints.
310    if '*' in name:
311        name = name.split('*')[0]
312
313    if name == 'capped_cylinder' and pars['cap_radius'] < pars['radius']:
314        pars['radius'], pars['cap_radius'] = pars['cap_radius'], pars['radius']
315    if name == 'barbell' and pars['bell_radius'] < pars['radius']:
316        pars['radius'], pars['bell_radius'] = pars['bell_radius'], pars['radius']
317
318    # Limit guinier to an Rg such that Iq > 1e-30 (single precision cutoff)
319    if name == 'guinier':
320        #q_max = 0.2  # mid q maximum
321        q_max = 1.0  # high q maximum
322        rg_max = np.sqrt(90*np.log(10) + 3*np.log(pars['scale']))/q_max
323        pars['rg'] = min(pars['rg'], rg_max)
324
325    if name == 'rpa':
326        # Make sure phi sums to 1.0
327        if pars['case_num'] < 2:
328            pars['Phi1'] = 0.
329            pars['Phi2'] = 0.
330        elif pars['case_num'] < 5:
331            pars['Phi1'] = 0.
332        total = sum(pars['Phi'+c] for c in '1234')
333        for c in '1234':
334            pars['Phi'+c] /= total
335
336def parlist(model_info, pars, is2d):
337    # type: (ModelInfo, ParameterSet, bool) -> str
338    """
339    Format the parameter list for printing.
340    """
341    lines = []
342    parameters = model_info.parameters
343    for p in parameters.user_parameters(pars, is2d):
344        fields = dict(
345            value=pars.get(p.id, p.default),
346            pd=pars.get(p.id+"_pd", 0.),
347            n=int(pars.get(p.id+"_pd_n", 0)),
348            nsigma=pars.get(p.id+"_pd_nsgima", 3.),
349            pdtype=pars.get(p.id+"_pd_type", 'gaussian'),
350        )
351        lines.append(_format_par(p.name, **fields))
352    return "\n".join(lines)
353
354    #return "\n".join("%s: %s"%(p, v) for p, v in sorted(pars.items()))
355
356def _format_par(name, value=0., pd=0., n=0, nsigma=3., pdtype='gaussian'):
357    # type: (str, float, float, int, float, str) -> str
358    line = "%s: %g"%(name, value)
359    if pd != 0.  and n != 0:
360        line += " +/- %g  (%d points in [-%g,%g] sigma %s)"\
361                % (pd, n, nsigma, nsigma, pdtype)
362    return line
363
364def suppress_pd(pars):
365    # type: (ParameterSet) -> ParameterSet
366    """
367    Suppress theta_pd for now until the normalization is resolved.
368
369    May also suppress complete polydispersity of the model to test
370    models more quickly.
371    """
372    pars = pars.copy()
373    for p in pars:
374        if p.endswith("_pd_n"): pars[p] = 0
375    return pars
376
377def eval_sasview(model_info, data):
378    # type: (Modelinfo, Data) -> Calculator
379    """
380    Return a model calculator using the pre-4.0 SasView models.
381    """
382    # importing sas here so that the error message will be that sas failed to
383    # import rather than the more obscure smear_selection not imported error
384    import sas
385    import sas.models
386    from sas.models.qsmearing import smear_selection
387    from sas.models.MultiplicationModel import MultiplicationModel
388
389    def get_model_class(name):
390        # type: (str) -> "sas.models.BaseComponent"
391        #print("new",sorted(_pars.items()))
392        __import__('sas.models.' + name)
393        ModelClass = getattr(getattr(sas.models, name, None), name, None)
394        if ModelClass is None:
395            raise ValueError("could not find model %r in sas.models"%name)
396        return ModelClass
397
398    # WARNING: ugly hack when handling model!
399    # Sasview models with multiplicity need to be created with the target
400    # multiplicity, so we cannot create the target model ahead of time for
401    # for multiplicity models.  Instead we store the model in a list and
402    # update the first element of that list with the new multiplicity model
403    # every time we evaluate.
404
405    # grab the sasview model, or create it if it is a product model
406    if model_info.composition:
407        composition_type, parts = model_info.composition
408        if composition_type == 'product':
409            P, S = [get_model(revert_name(p)) for p in parts]
410            model = [MultiplicationModel(P, S)]
411        else:
412            raise ValueError("sasview mixture models not supported by compare")
413    else:
414        old_name = revert_name(model_info)
415        if old_name is None:
416            raise ValueError("model %r does not exist in old sasview"
417                            % model_info.id)
418        ModelClass = get_model_class(old_name)
419        model = [ModelClass()]
420
421    # build a smearer with which to call the model, if necessary
422    smearer = smear_selection(data, model=model)
423    if hasattr(data, 'qx_data'):
424        q = np.sqrt(data.qx_data**2 + data.qy_data**2)
425        index = ((~data.mask) & (~np.isnan(data.data))
426                 & (q >= data.qmin) & (q <= data.qmax))
427        if smearer is not None:
428            smearer.model = model  # because smear_selection has a bug
429            smearer.accuracy = data.accuracy
430            smearer.set_index(index)
431            def _call_smearer():
432                smearer.model = model[0]
433                return smearer.get_value()
434            theory = lambda: _call_smearer()
435        else:
436            theory = lambda: model[0].evalDistribution([data.qx_data[index],
437                                                        data.qy_data[index]])
438    elif smearer is not None:
439        theory = lambda: smearer(model[0].evalDistribution(data.x))
440    else:
441        theory = lambda: model[0].evalDistribution(data.x)
442
443    def calculator(**pars):
444        # type: (float, ...) -> np.ndarray
445        """
446        Sasview calculator for model.
447        """
448        # For multiplicity models, recreate the model the first time the
449        if model_info.control:
450            model[0] = ModelClass(int(pars[model_info.control]))
451        # paying for parameter conversion each time to keep life simple, if not fast
452        oldpars = revert_pars(model_info, pars)
453        for k, v in oldpars.items():
454            name_attr = k.split('.')  # polydispersity components
455            if len(name_attr) == 2:
456                model[0].dispersion[name_attr[0]][name_attr[1]] = v
457            else:
458                model[0].setParam(k, v)
459        return theory()
460
461    calculator.engine = "sasview"
462    return calculator
463
464DTYPE_MAP = {
465    'half': '16',
466    'fast': 'fast',
467    'single': '32',
468    'double': '64',
469    'quad': '128',
470    'f16': '16',
471    'f32': '32',
472    'f64': '64',
473    'longdouble': '128',
474}
475def eval_opencl(model_info, data, dtype='single', cutoff=0.):
476    # type: (ModelInfo, Data, str, float) -> Calculator
477    """
478    Return a model calculator using the OpenCL calculation engine.
479    """
480    if not core.HAVE_OPENCL:
481        raise RuntimeError("OpenCL not available")
482    model = core.build_model(model_info, dtype=dtype, platform="ocl")
483    calculator = DirectModel(data, model, cutoff=cutoff)
484    calculator.engine = "OCL%s"%DTYPE_MAP[dtype]
485    return calculator
486
487def eval_ctypes(model_info, data, dtype='double', cutoff=0.):
488    # type: (ModelInfo, Data, str, float) -> Calculator
489    """
490    Return a model calculator using the DLL calculation engine.
491    """
492    model = core.build_model(model_info, dtype=dtype, platform="dll")
493    calculator = DirectModel(data, model, cutoff=cutoff)
494    calculator.engine = "OMP%s"%DTYPE_MAP[dtype]
495    return calculator
496
497def time_calculation(calculator, pars, Nevals=1):
498    # type: (Calculator, ParameterSet, int) -> Tuple[np.ndarray, float]
499    """
500    Compute the average calculation time over N evaluations.
501
502    An additional call is generated without polydispersity in order to
503    initialize the calculation engine, and make the average more stable.
504    """
505    # initialize the code so time is more accurate
506    if Nevals > 1:
507        calculator(**suppress_pd(pars))
508    toc = tic()
509    # make sure there is at least one eval
510    value = calculator(**pars)
511    for _ in range(Nevals-1):
512        value = calculator(**pars)
513    average_time = toc()*1000./Nevals
514    #print("I(q)",value)
515    return value, average_time
516
517def make_data(opts):
518    # type: (Dict[str, Any]) -> Tuple[Data, np.ndarray]
519    """
520    Generate an empty dataset, used with the model to set Q points
521    and resolution.
522
523    *opts* contains the options, with 'qmax', 'nq', 'res',
524    'accuracy', 'is2d' and 'view' parsed from the command line.
525    """
526    qmax, nq, res = opts['qmax'], opts['nq'], opts['res']
527    if opts['is2d']:
528        q = np.linspace(-qmax, qmax, nq)  # type: np.ndarray
529        data = empty_data2D(q, resolution=res)
530        data.accuracy = opts['accuracy']
531        set_beam_stop(data, 0.0004)
532        index = ~data.mask
533    else:
534        if opts['view'] == 'log' and not opts['zero']:
535            qmax = math.log10(qmax)
536            q = np.logspace(qmax-3, qmax, nq)
537        else:
538            q = np.linspace(0.001*qmax, qmax, nq)
539        if opts['zero']:
540            q = np.hstack((0, q))
541        data = empty_data1D(q, resolution=res)
542        index = slice(None, None)
543    return data, index
544
545def make_engine(model_info, data, dtype, cutoff):
546    # type: (ModelInfo, Data, str, float) -> Calculator
547    """
548    Generate the appropriate calculation engine for the given datatype.
549
550    Datatypes with '!' appended are evaluated using external C DLLs rather
551    than OpenCL.
552    """
553    if dtype == 'sasview':
554        return eval_sasview(model_info, data)
555    elif dtype.endswith('!'):
556        return eval_ctypes(model_info, data, dtype=dtype[:-1], cutoff=cutoff)
557    else:
558        return eval_opencl(model_info, data, dtype=dtype, cutoff=cutoff)
559
560def _show_invalid(data, theory):
561    # type: (Data, np.ma.ndarray) -> None
562    """
563    Display a list of the non-finite values in theory.
564    """
565    if not theory.mask.any():
566        return
567
568    if hasattr(data, 'x'):
569        bad = zip(data.x[theory.mask], theory[theory.mask])
570        print("   *** ", ", ".join("I(%g)=%g"%(x, y) for x, y in bad))
571
572
573def compare(opts, limits=None):
574    # type: (Dict[str, Any], Optional[Tuple[float, float]]) -> Tuple[float, float]
575    """
576    Preform a comparison using options from the command line.
577
578    *limits* are the limits on the values to use, either to set the y-axis
579    for 1D or to set the colormap scale for 2D.  If None, then they are
580    inferred from the data and returned. When exploring using Bumps,
581    the limits are set when the model is initially called, and maintained
582    as the values are adjusted, making it easier to see the effects of the
583    parameters.
584    """
585    Nbase, Ncomp = opts['n1'], opts['n2']
586    pars = opts['pars']
587    data = opts['data']
588
589    # silence the linter
590    base = opts['engines'][0] if Nbase else None
591    comp = opts['engines'][1] if Ncomp else None
592    base_time = comp_time = None
593    base_value = comp_value = resid = relerr = None
594
595    # Base calculation
596    if Nbase > 0:
597        try:
598            base_raw, base_time = time_calculation(base, pars, Nbase)
599            base_value = np.ma.masked_invalid(base_raw)
600            print("%s t=%.2f ms, intensity=%.0f"
601                  % (base.engine, base_time, base_value.sum()))
602            _show_invalid(data, base_value)
603        except ImportError:
604            traceback.print_exc()
605            Nbase = 0
606
607    # Comparison calculation
608    if Ncomp > 0:
609        try:
610            comp_raw, comp_time = time_calculation(comp, pars, Ncomp)
611            comp_value = np.ma.masked_invalid(comp_raw)
612            print("%s t=%.2f ms, intensity=%.0f"
613                  % (comp.engine, comp_time, comp_value.sum()))
614            _show_invalid(data, comp_value)
615        except ImportError:
616            traceback.print_exc()
617            Ncomp = 0
618
619    # Compare, but only if computing both forms
620    if Nbase > 0 and Ncomp > 0:
621        resid = (base_value - comp_value)
622        relerr = resid/np.where(comp_value!=0., abs(comp_value), 1.0)
623        _print_stats("|%s-%s|"
624                     % (base.engine, comp.engine) + (" "*(3+len(comp.engine))),
625                     resid)
626        _print_stats("|(%s-%s)/%s|"
627                     % (base.engine, comp.engine, comp.engine),
628                     relerr)
629
630    # Plot if requested
631    if not opts['plot'] and not opts['explore']: return
632    view = opts['view']
633    import matplotlib.pyplot as plt
634    if limits is None:
635        vmin, vmax = np.Inf, -np.Inf
636        if Nbase > 0:
637            vmin = min(vmin, base_value.min())
638            vmax = max(vmax, base_value.max())
639        if Ncomp > 0:
640            vmin = min(vmin, comp_value.min())
641            vmax = max(vmax, comp_value.max())
642        limits = vmin, vmax
643
644    if Nbase > 0:
645        if Ncomp > 0: plt.subplot(131)
646        plot_theory(data, base_value, view=view, use_data=False, limits=limits)
647        plt.title("%s t=%.2f ms"%(base.engine, base_time))
648        #cbar_title = "log I"
649    if Ncomp > 0:
650        if Nbase > 0: plt.subplot(132)
651        plot_theory(data, comp_value, view=view, use_data=False, limits=limits)
652        plt.title("%s t=%.2f ms"%(comp.engine, comp_time))
653        #cbar_title = "log I"
654    if Ncomp > 0 and Nbase > 0:
655        plt.subplot(133)
656        if not opts['rel_err']:
657            err, errstr, errview = resid, "abs err", "linear"
658        else:
659            err, errstr, errview = abs(relerr), "rel err", "log"
660        #err,errstr = base/comp,"ratio"
661        plot_theory(data, None, resid=err, view=errview, use_data=False)
662        if view == 'linear':
663            plt.xscale('linear')
664        plt.title("max %s = %.3g"%(errstr, abs(err).max()))
665        #cbar_title = errstr if errview=="linear" else "log "+errstr
666    #if is2D:
667    #    h = plt.colorbar()
668    #    h.ax.set_title(cbar_title)
669
670    if Ncomp > 0 and Nbase > 0 and '-hist' in opts:
671        plt.figure()
672        v = relerr
673        v[v == 0] = 0.5*np.min(np.abs(v[v != 0]))
674        plt.hist(np.log10(np.abs(v)), normed=1, bins=50)
675        plt.xlabel('log10(err), err = |(%s - %s) / %s|'
676                   % (base.engine, comp.engine, comp.engine))
677        plt.ylabel('P(err)')
678        plt.title('Distribution of relative error between calculation engines')
679
680    if not opts['explore']:
681        plt.show()
682
683    return limits
684
685def _print_stats(label, err):
686    # type: (str, np.ma.ndarray) -> None
687    # work with trimmed data, not the full set
688    sorted_err = np.sort(abs(err.compressed()))
689    p50 = int((len(sorted_err)-1)*0.50)
690    p98 = int((len(sorted_err)-1)*0.98)
691    data = [
692        "max:%.3e"%sorted_err[-1],
693        "median:%.3e"%sorted_err[p50],
694        "98%%:%.3e"%sorted_err[p98],
695        "rms:%.3e"%np.sqrt(np.mean(sorted_err**2)),
696        "zero-offset:%+.3e"%np.mean(sorted_err),
697        ]
698    print(label+"  "+"  ".join(data))
699
700
701
702# ===========================================================================
703#
704NAME_OPTIONS = set([
705    'plot', 'noplot',
706    'half', 'fast', 'single', 'double',
707    'single!', 'double!', 'quad!', 'sasview',
708    'lowq', 'midq', 'highq', 'exq', 'zero',
709    '2d', '1d',
710    'preset', 'random',
711    'poly', 'mono',
712    'nopars', 'pars',
713    'rel', 'abs',
714    'linear', 'log', 'q4',
715    'hist', 'nohist',
716    'edit',
717    'demo', 'default',
718    ])
719VALUE_OPTIONS = [
720    # Note: random is both a name option and a value option
721    'cutoff', 'random', 'nq', 'res', 'accuracy',
722    ]
723
724def columnize(L, indent="", width=79):
725    # type: (List[str], str, int) -> str
726    """
727    Format a list of strings into columns.
728
729    Returns a string with carriage returns ready for printing.
730    """
731    column_width = max(len(w) for w in L) + 1
732    num_columns = (width - len(indent)) // column_width
733    num_rows = len(L) // num_columns
734    L = L + [""] * (num_rows*num_columns - len(L))
735    columns = [L[k*num_rows:(k+1)*num_rows] for k in range(num_columns)]
736    lines = [" ".join("%-*s"%(column_width, entry) for entry in row)
737             for row in zip(*columns)]
738    output = indent + ("\n"+indent).join(lines)
739    return output
740
741
742def get_pars(model_info, use_demo=False):
743    # type: (ModelInfo, bool) -> ParameterSet
744    """
745    Extract demo parameters from the model definition.
746    """
747    # Get the default values for the parameters
748    pars = {}
749    for p in model_info.parameters.call_parameters:
750        parts = [('', p.default)]
751        if p.polydisperse:
752            parts.append(('_pd', 0.0))
753            parts.append(('_pd_n', 0))
754            parts.append(('_pd_nsigma', 3.0))
755            parts.append(('_pd_type', "gaussian"))
756        for ext, val in parts:
757            if p.length > 1:
758                dict(("%s%d%s"%(p.id,k,ext), val) for k in range(1, p.length+1))
759            else:
760                pars[p.id+ext] = val
761
762    # Plug in values given in demo
763    if use_demo:
764        pars.update(model_info.demo)
765    return pars
766
767
768def parse_opts():
769    # type: () -> Dict[str, Any]
770    """
771    Parse command line options.
772    """
773    MODELS = core.list_models()
774    flags = [arg for arg in sys.argv[1:]
775             if arg.startswith('-')]
776    values = [arg for arg in sys.argv[1:]
777              if not arg.startswith('-') and '=' in arg]
778    args = [arg for arg in sys.argv[1:]
779            if not arg.startswith('-') and '=' not in arg]
780    models = "\n    ".join("%-15s"%v for v in MODELS)
781    if len(args) == 0:
782        print(USAGE)
783        print("\nAvailable models:")
784        print(columnize(MODELS, indent="  "))
785        sys.exit(1)
786    if len(args) > 3:
787        print("expected parameters: model N1 N2")
788
789    name = args[0]
790    try:
791        model_info = core.load_model_info(name)
792    except ImportError as exc:
793        print(str(exc))
794        print("Could not find model; use one of:\n    " + models)
795        sys.exit(1)
796
797    invalid = [o[1:] for o in flags
798               if o[1:] not in NAME_OPTIONS
799               and not any(o.startswith('-%s='%t) for t in VALUE_OPTIONS)]
800    if invalid:
801        print("Invalid options: %s"%(", ".join(invalid)))
802        sys.exit(1)
803
804
805    # pylint: disable=bad-whitespace
806    # Interpret the flags
807    opts = {
808        'plot'      : True,
809        'view'      : 'log',
810        'is2d'      : False,
811        'qmax'      : 0.05,
812        'nq'        : 128,
813        'res'       : 0.0,
814        'accuracy'  : 'Low',
815        'cutoff'    : 0.0,
816        'seed'      : -1,  # default to preset
817        'mono'      : False,
818        'show_pars' : False,
819        'show_hist' : False,
820        'rel_err'   : True,
821        'explore'   : False,
822        'use_demo'  : True,
823        'zero'      : False,
824    }
825    engines = []
826    for arg in flags:
827        if arg == '-noplot':    opts['plot'] = False
828        elif arg == '-plot':    opts['plot'] = True
829        elif arg == '-linear':  opts['view'] = 'linear'
830        elif arg == '-log':     opts['view'] = 'log'
831        elif arg == '-q4':      opts['view'] = 'q4'
832        elif arg == '-1d':      opts['is2d'] = False
833        elif arg == '-2d':      opts['is2d'] = True
834        elif arg == '-exq':     opts['qmax'] = 10.0
835        elif arg == '-highq':   opts['qmax'] = 1.0
836        elif arg == '-midq':    opts['qmax'] = 0.2
837        elif arg == '-lowq':    opts['qmax'] = 0.05
838        elif arg == '-zero':    opts['zero'] = True
839        elif arg.startswith('-nq='):       opts['nq'] = int(arg[4:])
840        elif arg.startswith('-res='):      opts['res'] = float(arg[5:])
841        elif arg.startswith('-accuracy='): opts['accuracy'] = arg[10:]
842        elif arg.startswith('-cutoff='):   opts['cutoff'] = float(arg[8:])
843        elif arg.startswith('-random='):   opts['seed'] = int(arg[8:])
844        elif arg == '-random':  opts['seed'] = np.random.randint(1000000)
845        elif arg == '-preset':  opts['seed'] = -1
846        elif arg == '-mono':    opts['mono'] = True
847        elif arg == '-poly':    opts['mono'] = False
848        elif arg == '-pars':    opts['show_pars'] = True
849        elif arg == '-nopars':  opts['show_pars'] = False
850        elif arg == '-hist':    opts['show_hist'] = True
851        elif arg == '-nohist':  opts['show_hist'] = False
852        elif arg == '-rel':     opts['rel_err'] = True
853        elif arg == '-abs':     opts['rel_err'] = False
854        elif arg == '-half':    engines.append(arg[1:])
855        elif arg == '-fast':    engines.append(arg[1:])
856        elif arg == '-single':  engines.append(arg[1:])
857        elif arg == '-double':  engines.append(arg[1:])
858        elif arg == '-single!': engines.append(arg[1:])
859        elif arg == '-double!': engines.append(arg[1:])
860        elif arg == '-quad!':   engines.append(arg[1:])
861        elif arg == '-sasview': engines.append(arg[1:])
862        elif arg == '-edit':    opts['explore'] = True
863        elif arg == '-demo':    opts['use_demo'] = True
864        elif arg == '-default':    opts['use_demo'] = False
865    # pylint: enable=bad-whitespace
866
867    if len(engines) == 0:
868        engines.extend(['single', 'double'])
869    elif len(engines) == 1:
870        if engines[0][0] == 'double':
871            engines.append('single')
872        else:
873            engines.append('double')
874    elif len(engines) > 2:
875        del engines[2:]
876
877    n1 = int(args[1]) if len(args) > 1 else 1
878    n2 = int(args[2]) if len(args) > 2 else 1
879    use_sasview = any(engine=='sasview' and count>0
880                      for engine, count in zip(engines, [n1, n2]))
881
882    # Get demo parameters from model definition, or use default parameters
883    # if model does not define demo parameters
884    pars = get_pars(model_info, opts['use_demo'])
885
886
887    # Fill in parameters given on the command line
888    presets = {}
889    for arg in values:
890        k, v = arg.split('=', 1)
891        if k not in pars:
892            # extract base name without polydispersity info
893            s = set(p.split('_pd')[0] for p in pars)
894            print("%r invalid; parameters are: %s"%(k, ", ".join(sorted(s))))
895            sys.exit(1)
896        presets[k] = float(v) if not k.endswith('type') else v
897
898    # randomize parameters
899    #pars.update(set_pars)  # set value before random to control range
900    if opts['seed'] > -1:
901        pars = randomize_pars(model_info, pars, seed=opts['seed'])
902        print("Randomize using -random=%i"%opts['seed'])
903    if opts['mono']:
904        pars = suppress_pd(pars)
905    pars.update(presets)  # set value after random to control value
906    #import pprint; pprint.pprint(model_info)
907    constrain_pars(model_info, pars)
908    if use_sasview:
909        constrain_new_to_old(model_info, pars)
910    if opts['show_pars']:
911        print(str(parlist(model_info, pars, opts['is2d'])))
912
913    # Create the computational engines
914    data, _ = make_data(opts)
915    if n1:
916        base = make_engine(model_info, data, engines[0], opts['cutoff'])
917    else:
918        base = None
919    if n2:
920        comp = make_engine(model_info, data, engines[1], opts['cutoff'])
921    else:
922        comp = None
923
924    # pylint: disable=bad-whitespace
925    # Remember it all
926    opts.update({
927        'name'      : name,
928        'def'       : model_info,
929        'n1'        : n1,
930        'n2'        : n2,
931        'presets'   : presets,
932        'pars'      : pars,
933        'data'      : data,
934        'engines'   : [base, comp],
935    })
936    # pylint: enable=bad-whitespace
937
938    return opts
939
940def explore(opts):
941    # type: (Dict[str, Any]) -> None
942    """
943    Explore the model using the Bumps GUI.
944    """
945    import wx  # type: ignore
946    from bumps.names import FitProblem  # type: ignore
947    from bumps.gui.app_frame import AppFrame  # type: ignore
948
949    problem = FitProblem(Explore(opts))
950    is_mac = "cocoa" in wx.version()
951    app = wx.App()
952    frame = AppFrame(parent=None, title="explore")
953    if not is_mac: frame.Show()
954    frame.panel.set_model(model=problem)
955    frame.panel.Layout()
956    frame.panel.aui.Split(0, wx.TOP)
957    if is_mac: frame.Show()
958    app.MainLoop()
959
960class Explore(object):
961    """
962    Bumps wrapper for a SAS model comparison.
963
964    The resulting object can be used as a Bumps fit problem so that
965    parameters can be adjusted in the GUI, with plots updated on the fly.
966    """
967    def __init__(self, opts):
968        # type: (Dict[str, Any]) -> None
969        from bumps.cli import config_matplotlib  # type: ignore
970        from . import bumps_model
971        config_matplotlib()
972        self.opts = opts
973        model_info = opts['def']
974        pars, pd_types = bumps_model.create_parameters(model_info, **opts['pars'])
975        # Initialize parameter ranges, fixing the 2D parameters for 1D data.
976        if not opts['is2d']:
977            for p in model_info.parameters.user_parameters(is2d=False):
978                for ext in ['', '_pd', '_pd_n', '_pd_nsigma']:
979                    k = p.name+ext
980                    v = pars.get(k, None)
981                    if v is not None:
982                        v.range(*parameter_range(k, v.value))
983        else:
984            for k, v in pars.items():
985                v.range(*parameter_range(k, v.value))
986
987        self.pars = pars
988        self.pd_types = pd_types
989        self.limits = None
990
991    def numpoints(self):
992        # type: () -> int
993        """
994        Return the number of points.
995        """
996        return len(self.pars) + 1  # so dof is 1
997
998    def parameters(self):
999        # type: () -> Any   # Dict/List hierarchy of parameters
1000        """
1001        Return a dictionary of parameters.
1002        """
1003        return self.pars
1004
1005    def nllf(self):
1006        # type: () -> float
1007        """
1008        Return cost.
1009        """
1010        # pylint: disable=no-self-use
1011        return 0.  # No nllf
1012
1013    def plot(self, view='log'):
1014        # type: (str) -> None
1015        """
1016        Plot the data and residuals.
1017        """
1018        pars = dict((k, v.value) for k, v in self.pars.items())
1019        pars.update(self.pd_types)
1020        self.opts['pars'] = pars
1021        limits = compare(self.opts, limits=self.limits)
1022        if self.limits is None:
1023            vmin, vmax = limits
1024            self.limits = vmax*1e-7, 1.3*vmax
1025
1026
1027def main():
1028    # type: () -> None
1029    """
1030    Main program.
1031    """
1032    opts = parse_opts()
1033    if opts['explore']:
1034        explore(opts)
1035    else:
1036        compare(opts)
1037
1038if __name__ == "__main__":
1039    main()
Note: See TracBrowser for help on using the repository browser.