from collections import namedtuple import numpy as np from numpy import sqrt, exp, expm1 AVOGADRO = 6.022e23 Polymer = namedtuple("Polymer", "n phi v a b".split()) def E(q, poly): qrsq = (q*Rg(poly))**2 retval = exp(-qrsq) return retval def F(q, poly): qrsq = (q*Rg(poly))**2 retval = -expm1(-qrsq)/qrsq return retval def P_ii(q, poly): qrsq = (q*Rg(poly))**2 retval = 2 * (expm1(-qrsq) + qrsq)/qrsq**2 return retval def P_ij(q, poly_list): i, j = poly_list[0], poly_list[-1] retval = F(q, i) * np.prod([E(q,p) for p in poly_list[1:-1]]) * F(q, j) return retval def Rg(poly): return sqrt(poly.n/6.)*poly.a def S0_ii(q, poly): retval = poly.n*poly.phi*poly.v*P_ii(q, poly) return retval def S0_ij(q, poly_list): i,j = poly_list[0], poly_list[-1] retval = sqrt(i.n*i.phi*i.v*j.n*j.phi*j.v) * P_ij(q, poly_list) return retval def drho(poly, base): return (poly.b/poly.v - base.b/base.v)*1e-13*sqrt(AVOGADRO) def binary_blend(q, C, D, Kcd): """ de Gennes, 1979 """ S0cc = S0_ii(q, C) S0dd = S0_ii(q, D) vcc = 1/S0dd - 2*Kcd #/v0 Scc = S0cc/(1 + vcc*S0cc) rhocd = drho(C,D) Iq = rhocd**2 * Scc return Iq def ternary_blend(q, B, C, D, Kbc, Kbd, Kcd): S0bb = S0_ii(q, B) S0cc = S0_ii(q, C) S0dd = S0_ii(q, D) vbb = 1/S0dd - 2*Kbd vcc = 1/S0dd - 2*Kcd vbc = 1/S0dd + Kbd - Kbc - Kcd rhobd = drho(B,D) rhocd = drho(C,D) det = (1+vbb*S0bb)*(1+vcc*S0cc) - vbc**2*S0bb*S0cc Sbb = S0bb*(1+vcc*S0cc)/det Scc = S0cc*(1+vbb*S0bb)/det Sbc = -S0bb*vbc*S0cc/det Iq = rhobd**2*Sbb + rhocd**2*Scc + 2*rhobd*rhocd*Sbc return Iq def diblock_copolymer(q, C, D, Kcd): """ Leibler, 1980 """ S0cc = S0_ii(q, C) S0dd = S0_ii(q, D) S0cd = S0_ij(q, [C, D]) Scc = (S0cc*S0dd - S0cd**2)/((S0cc+S0dd + 2*S0cd)-2*Kcd*(S0cc+S0dd-2*S0cd)) rhocd = drho(C,D) Iq = rhocd**2 * Scc return Iq def matrix_form(q, case_num, polys, Kab=0., Kac=0., Kad=0., Kbc=0., Kbd=0., Kcd=0.): if case_num < 2: C, D = polys A = B = D elif case_num < 5: B, C, D = polys A = D else: A, B, C, D = polys rho = np.matrix([[drho(p, D)] for p in (A,B,C)]) S0aa = S0_ii(q, A) S0bb = S0_ii(q, B) S0cc = S0_ii(q, C) S0ab = S0_ij(q, [A, B]) S0ac = S0_ij(q, [A, B, C]) S0bc = S0_ij(q, [B, C]) if case_num == 4: # No a-c interaction in triblock copolymer S0ac *= 0.0 elif case_num == 9: # No a-c or a-d interaction in tetrablock copolymer S0ac *= 0.0 S0 = np.array([[S0aa, S0ab, S0ac], [S0ab, S0bb, S0bc], [S0ac, S0bc, S0cc]]) S0dd = S0_ii(q, D) vaa = 1./S0dd - 2*Kad vbb = 1./S0dd - 2*Kbd vcc = 1./S0dd - 2*Kcd vab = 1./S0dd + Kab - Kad - Kbd vac = 1./S0dd + Kac - Kad - Kcd vbc = 1./S0dd + Kbc - Kbd - Kcd v = np.array([[vaa, vab, vac], [vab, vbb, vbc], [vac, vbc, vcc]]) Iq = np.empty_like(q) for k, qk in enumerate(q): S0_k = S0[:,:,k].M v_k = v[:,:,k].M S_k = np.linalg.inv(1 + S0_k*v_k)*S0_k Iq[k] = rho.T * S_k * rho def build_pars(case_num, polys, **interactions): def set_poly(x, poly): pars["N"+x] = poly.n pars["Phi"+x] = poly.phi pars["v"+x] = poly.v pars["b"+x] = poly.a pars["L"+x] = poly.b pars = interactions.copy() pars["case_num"] = case_num polys = list(reversed(polys)) if len(polys) >= 4: set_poly("a",polys[3]) if len(polys) >= 3: set_poly("b",polys[2]) if len(polys) >= 2: set_poly("c",polys[1]) if len(polys) >= 1: set_poly("d",polys[0]) return pars def sasmodels_rpa(q, pars): from sasmodels.models import rpa from sasmodels.core import load_model from sasmodels.direct_model import DirectModel from sasmodels.data import empty_data1D data = empty_data1D(q, resolution=0.0) model = load_model(rpa, dtype="double", platform="dll") #model = load_model(rpa, dtype="single", platform="ocl") M = DirectModel(data, model) return M(**pars) def sasview_rpa(q, pars): from sasmodels.models import rpa from sasmodels.compare import eval_sasview from sasmodels.data import empty_data1D data = empty_data1D(q, resolution=0.0) M = eval_sasview(rpa, data) return M(**pars) def demo(): import sys case_num = 0 if len(sys.argv) < 2 else int(sys.argv[1]) B = Polymer(n=525,phi=0.57,v=97.5,b=-4.99,a=8) C = Polymer(n=525,phi=0.57,v=97.5,b=-4.99,a=8) D = Polymer(n=1105,phi=0.43,v=81.9,b=53.1,a=2) q = np.logspace(-4,-1,400) #q = np.array([0.1]) Kab=Kac=Kad=0.0 Kcd = 0.0106*0.0035 - 1.84e-5 Kbd = Kcd + 2e-4 Kbc = (Kcd + 1e-4)*0.5 K = dict(Kab=Kab,Kac=Kac,Kad=Kad,Kbc=Kbc,Kbd=Kbd,Kcd=Kcd) if case_num == 0: Iq = binary_blend(q, C, D, Kcd) elif case_num == 1: Iq = diblock_copolymer(q, C, D, Kcd) elif case_num == 2: Iq = ternary_blend(q, B, C, D, Kbc, Kbd, Kcd) else: raise ValueError("Case %d not implmented"%case_num) pars = build_pars(case_num, [B, C, D], **K) print "eval sasmodels" Iq_sasmodels = sasmodels_rpa(q, pars) print "eval sasview" Iq_sasview = sasview_rpa(q, pars) print 1./Iq[0], 1./Iq_sasmodels[0], 1./Iq_sasview[0] #return import pylab pylab.subplot(121) pylab.loglog(q, Iq, label='direct') pylab.loglog(q, Iq_sasmodels, label='sasmodels') pylab.loglog(q, Iq_sasview, label='sasview') pylab.legend() pylab.subplot(122) pylab.loglog(q, abs(Iq_sasview - Iq_sasmodels)/Iq_sasmodels, label='sasview-sasmodels') pylab.loglog(q, abs(Iq_sasmodels - Iq)/Iq, label='sasmodels-direct') pylab.legend() pylab.show() if __name__ == "__main__": demo()