#!/usr/bin/env python """ Application to explore the difference between sasview 3.x orientation dispersity and possible replacement algorithms. """ from __future__ import division, print_function import sys, os sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) import mpl_toolkits.mplot3d # Adds projection='3d' option to subplot import matplotlib.pyplot as plt from matplotlib.widgets import Slider, CheckButtons from matplotlib import cm import numpy as np from numpy import pi, cos, sin, sqrt, exp, degrees, radians def draw_beam(ax, view=(0, 0)): """ Draw the beam going from source at (0, 0, 1) to detector at (0, 0, -1) """ #ax.plot([0,0],[0,0],[1,-1]) #ax.scatter([0]*100,[0]*100,np.linspace(1, -1, 100), alpha=0.8) steps = 25 u = np.linspace(0, 2 * np.pi, steps) v = np.linspace(-1, 1, steps) r = 0.02 x = r*np.outer(np.cos(u), np.ones_like(v)) y = r*np.outer(np.sin(u), np.ones_like(v)) z = 1.3*np.outer(np.ones_like(u), v) theta, phi = view shape = x.shape points = np.matrix([x.flatten(), y.flatten(), z.flatten()]) points = Rz(phi)*Ry(theta)*points x, y, z = [v.reshape(shape) for v in points] ax.plot_surface(x, y, z, rstride=4, cstride=4, color='y', alpha=0.5) def draw_jitter(ax, view, jitter, dist='gaussian', size=(0.1, 0.4, 1.0)): """ Represent jitter as a set of shapes at different orientations. """ # set max diagonal to 0.95 scale = 0.95/sqrt(sum(v**2 for v in size)) size = tuple(scale*v for v in size) draw_shape = draw_parallelepiped #draw_shape = draw_ellipsoid #np.random.seed(10) #cloud = np.random.randn(10,3) cloud = [ [-1, -1, -1], [-1, -1, 0], [-1, -1, 1], [-1, 0, -1], [-1, 0, 0], [-1, 0, 1], [-1, 1, -1], [-1, 1, 0], [-1, 1, 1], [ 0, -1, -1], [ 0, -1, 0], [ 0, -1, 1], [ 0, 0, -1], [ 0, 0, 0], [ 0, 0, 1], [ 0, 1, -1], [ 0, 1, 0], [ 0, 1, 1], [ 1, -1, -1], [ 1, -1, 0], [ 1, -1, 1], [ 1, 0, -1], [ 1, 0, 0], [ 1, 0, 1], [ 1, 1, -1], [ 1, 1, 0], [ 1, 1, 1], ] dtheta, dphi, dpsi = jitter if dtheta == 0: cloud = [v for v in cloud if v[0] == 0] if dphi == 0: cloud = [v for v in cloud if v[1] == 0] if dpsi == 0: cloud = [v for v in cloud if v[2] == 0] draw_shape(ax, size, view, [0, 0, 0], steps=100, alpha=0.8) scale = 1/sqrt(3) if dist == 'rectangle' else 1 for point in cloud: delta = [scale*dtheta*point[0], scale*dphi*point[1], scale*dpsi*point[2]] draw_shape(ax, size, view, delta, alpha=0.8) for v in 'xyz': a, b, c = size lim = np.sqrt(a**2+b**2+c**2) getattr(ax, 'set_'+v+'lim')([-lim, lim]) getattr(ax, v+'axis').label.set_text(v) def draw_ellipsoid(ax, size, view, jitter, steps=25, alpha=1): """Draw an ellipsoid.""" a,b,c = size u = np.linspace(0, 2 * np.pi, steps) v = np.linspace(0, np.pi, steps) x = a*np.outer(np.cos(u), np.sin(v)) y = b*np.outer(np.sin(u), np.sin(v)) z = c*np.outer(np.ones_like(u), np.cos(v)) x, y, z = transform_xyz(view, jitter, x, y, z) ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w', alpha=alpha) draw_labels(ax, view, jitter, [ ('c+', [ 0, 0, c], [ 1, 0, 0]), ('c-', [ 0, 0,-c], [ 0, 0,-1]), ('a+', [ a, 0, 0], [ 0, 0, 1]), ('a-', [-a, 0, 0], [ 0, 0,-1]), ('b+', [ 0, b, 0], [-1, 0, 0]), ('b-', [ 0,-b, 0], [-1, 0, 0]), ]) def draw_parallelepiped(ax, size, view, jitter, steps=None, alpha=1): """Draw a parallelepiped.""" a,b,c = size x = a*np.array([ 1,-1, 1,-1, 1,-1, 1,-1]) y = b*np.array([ 1, 1,-1,-1, 1, 1,-1,-1]) z = c*np.array([ 1, 1, 1, 1,-1,-1,-1,-1]) tri = np.array([ # counter clockwise triangles # z: up/down, x: right/left, y: front/back [0,1,2], [3,2,1], # top face [6,5,4], [5,6,7], # bottom face [0,2,6], [6,4,0], # right face [1,5,7], [7,3,1], # left face [2,3,6], [7,6,3], # front face [4,1,0], [5,1,4], # back face ]) x, y, z = transform_xyz(view, jitter, x, y, z) ax.plot_trisurf(x, y, triangles=tri, Z=z, color='w', alpha=alpha) draw_labels(ax, view, jitter, [ ('c+', [ 0, 0, c], [ 1, 0, 0]), ('c-', [ 0, 0,-c], [ 0, 0,-1]), ('a+', [ a, 0, 0], [ 0, 0, 1]), ('a-', [-a, 0, 0], [ 0, 0,-1]), ('b+', [ 0, b, 0], [-1, 0, 0]), ('b-', [ 0,-b, 0], [-1, 0, 0]), ]) def draw_sphere(ax, radius=10., steps=100): """Draw a sphere""" u = np.linspace(0, 2 * np.pi, steps) v = np.linspace(0, np.pi, steps) x = radius * np.outer(np.cos(u), np.sin(v)) y = radius * np.outer(np.sin(u), np.sin(v)) z = radius * np.outer(np.ones(np.size(u)), np.cos(v)) ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w') def draw_mesh(ax, view, jitter, radius=1.2, n=11, dist='gaussian'): """ Draw the dispersion mesh showing the theta-phi orientations at which the model will be evaluated. """ theta, phi, psi = view dtheta, dphi, dpsi = jitter if dist == 'gaussian': t = np.linspace(-3, 3, n) weights = exp(-0.5*t**2) elif dist == 'rectangle': # Note: uses sasmodels ridiculous definition of rectangle width t = np.linspace(-1, 1, n)*sqrt(3) weights = np.ones_like(t) else: raise ValueError("expected dist to be 'gaussian' or 'rectangle'") # mesh in theta, phi formed by rotating z z = np.matrix([[0], [0], [radius]]) points = np.hstack([Rx(phi_i)*Ry(theta_i)*z for theta_i in dtheta*t for phi_i in dphi*t]) # rotate relative to beam points = orient_relative_to_beam(view, points) w = np.outer(weights*cos(radians(dtheta*t)), weights) x, y, z = [np.array(v).flatten() for v in points] ax.scatter(x, y, z, c=w.flatten(), marker='o', vmin=0., vmax=1.) def draw_labels(ax, view, jitter, text): """ Draw text at a particular location. """ labels, locations, orientations = zip(*text) px, py, pz = zip(*locations) dx, dy, dz = zip(*orientations) px, py, pz = transform_xyz(view, jitter, px, py, pz) dx, dy, dz = transform_xyz(view, jitter, dx, dy, dz) # TODO: zdir for labels is broken, and labels aren't appearing. for label, p, zdir in zip(labels, zip(px, py, pz), zip(dx, dy, dz)): zdir = np.asarray(zdir).flatten() ax.text(p[0], p[1], p[2], label, zdir=zdir) # Definition of rotation matrices comes from wikipedia: # https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations def Rx(angle): """Construct a matrix to rotate points about *x* by *angle* degrees.""" a = radians(angle) R = [[1, 0, 0], [0, +cos(a), -sin(a)], [0, +sin(a), +cos(a)]] return np.matrix(R) def Ry(angle): """Construct a matrix to rotate points about *y* by *angle* degrees.""" a = radians(angle) R = [[+cos(a), 0, +sin(a)], [0, 1, 0], [-sin(a), 0, +cos(a)]] return np.matrix(R) def Rz(angle): """Construct a matrix to rotate points about *z* by *angle* degrees.""" a = radians(angle) R = [[+cos(a), -sin(a), 0], [+sin(a), +cos(a), 0], [0, 0, 1]] return np.matrix(R) def transform_xyz(view, jitter, x, y, z): """ Send a set of (x,y,z) points through the jitter and view transforms. """ x, y, z = [np.asarray(v) for v in (x, y, z)] shape = x.shape points = np.matrix([x.flatten(),y.flatten(),z.flatten()]) points = apply_jitter(jitter, points) points = orient_relative_to_beam(view, points) x, y, z = [np.array(v).reshape(shape) for v in points] return x, y, z def apply_jitter(jitter, points): """ Apply the jitter transform to a set of points. Points are stored in a 3 x n numpy matrix, not a numpy array or tuple. """ dtheta, dphi, dpsi = jitter points = Rx(dphi)*Ry(dtheta)*Rz(dpsi)*points return points def orient_relative_to_beam(view, points): """ Apply the view transform to a set of points. Points are stored in a 3 x n numpy matrix, not a numpy array or tuple. """ theta, phi, psi = view points = Rz(phi)*Ry(theta)*Rz(psi)*points return points # translate between number of dimension of dispersity and the number of # points along each dimension. PD_N_TABLE = { (0, 0, 0): (0, 0, 0), # 0 (1, 0, 0): (100, 0, 0), # 100 (0, 1, 0): (0, 100, 0), (0, 0, 1): (0, 0, 100), (1, 1, 0): (30, 30, 0), # 900 (1, 0, 1): (30, 0, 30), (0, 1, 1): (0, 30, 30), (1, 1, 1): (15, 15, 15), # 3375 } def clipped_range(data, portion=1.0, mode='central'): """ Determine range from data. If *portion* is 1, use full range, otherwise use the center of the range or the top of the range, depending on whether *mode* is 'central' or 'top'. """ if portion == 1.0: return data.min(), data.max() elif mode == 'central': data = np.sort(data.flatten()) offset = int(portion*len(data)/2 + 0.5) return data[offset], data[-offset] elif mode == 'top': data = np.sort(data.flatten()) offset = int(portion*len(data) + 0.5) return data[offset], data[-1] def draw_scattering(calculator, ax, view, jitter, dist='gaussian'): """ Plot the scattering for the particular view. *calculator* is returned from :func:`build_model`. *ax* are the 3D axes on which the data will be plotted. *view* and *jitter* are the current orientation and orientation dispersity. *dist* is one of the sasmodels weight distributions. """ ## Sasmodels use sqrt(3)*width for the rectangle range; scale to the ## proper width for comparison. Commented out since now using the ## sasmodels definition of width for rectangle. #scale = 1/sqrt(3) if dist == 'rectangle' else 1 scale = 1 # add the orientation parameters to the model parameters theta, phi, psi = view theta_pd, phi_pd, psi_pd = [scale*v for v in jitter] theta_pd_n, phi_pd_n, psi_pd_n = PD_N_TABLE[(theta_pd>0, phi_pd>0, psi_pd>0)] ## increase pd_n for testing jitter integration rather than simple viz #theta_pd_n, phi_pd_n, psi_pd_n = [5*v for v in (theta_pd_n, phi_pd_n, psi_pd_n)] pars = dict( theta=theta, theta_pd=theta_pd, theta_pd_type=dist, theta_pd_n=theta_pd_n, phi=phi, phi_pd=phi_pd, phi_pd_type=dist, phi_pd_n=phi_pd_n, psi=psi, psi_pd=psi_pd, psi_pd_type=dist, psi_pd_n=psi_pd_n, ) pars.update(calculator.pars) # compute the pattern qx, qy = calculator._data.x_bins, calculator._data.y_bins Iqxy = calculator(**pars).reshape(len(qx), len(qy)) # scale it and draw it Iqxy = np.log(Iqxy) if calculator.limits: # use limits from orientation (0,0,0) vmin, vmax = calculator.limits else: vmin, vmax = clipped_range(Iqxy, portion=0.95, mode='top') #print("range",(vmin,vmax)) #qx, qy = np.meshgrid(qx, qy) if 0: level = np.asarray(255*(Iqxy - vmin)/(vmax - vmin), 'i') level[level<0] = 0 colors = plt.get_cmap()(level) ax.plot_surface(qx, qy, -1.1, rstride=1, cstride=1, facecolors=colors) elif 1: ax.contourf(qx/qx.max(), qy/qy.max(), Iqxy, zdir='z', offset=-1.1, levels=np.linspace(vmin, vmax, 24)) else: ax.pcolormesh(qx, qy, Iqxy) def build_model(model_name, n=150, qmax=0.5, **pars): """ Build a calculator for the given shape. *model_name* is any sasmodels model. *n* and *qmax* define an n x n mesh on which to evaluate the model. The remaining parameters are stored in the returned calculator as *calculator.pars*. They are used by :func:`draw_scattering` to set the non-orientation parameters in the calculation. Returns a *calculator* function which takes a dictionary or parameters and produces Iqxy. The Iqxy value needs to be reshaped to an n x n matrix for plotting. See the :class:`sasmodels.direct_model.DirectModel` class for details. """ from sasmodels.core import load_model_info, build_model from sasmodels.data import empty_data2D from sasmodels.direct_model import DirectModel model_info = load_model_info(model_name) model = build_model(model_info) #, dtype='double!') q = np.linspace(-qmax, qmax, n) data = empty_data2D(q, q) calculator = DirectModel(data, model) # stuff the values for non-orientation parameters into the calculator calculator.pars = pars.copy() calculator.pars.setdefault('backgound', 1e-3) # fix the data limits so that we can see if the pattern fades # under rotation or angular dispersion Iqxy = calculator(theta=0, phi=0, psi=0, **calculator.pars) Iqxy = np.log(Iqxy) vmin, vmax = clipped_range(Iqxy, 0.95, mode='top') calculator.limits = vmin, vmax+1 return calculator def select_calculator(model_name, n=150, size=(10,40,100)): """ Create a model calculator for the given shape. *model_name* is one of sphere, cylinder, ellipsoid, triaxial_ellipsoid, parallelepiped or bcc_paracrystal. *n* is the number of points to use in the q range. *qmax* is chosen based on model parameters for the given model to show something intersting. Returns *calculator* and tuple *size* (a,b,c) giving minor and major equitorial axes and polar axis respectively. See :func:`build_model` for details on the returned calculator. """ a, b, c = size if model_name == 'sphere': calculator = build_model('sphere', n=n, radius=c) a = b = c elif model_name == 'bcc_paracrystal': calculator = build_model('bcc_paracrystal', n=n, dnn=c, d_factor=0.06, radius=40) a = b = c elif model_name == 'cylinder': calculator = build_model('cylinder', n=n, qmax=0.3, radius=b, length=c) a = b elif model_name == 'ellipsoid': calculator = build_model('ellipsoid', n=n, qmax=1.0, radius_polar=c, radius_equatorial=b) a = b elif model_name == 'triaxial_ellipsoid': calculator = build_model('triaxial_ellipsoid', n=n, qmax=0.5, radius_equat_minor=a, radius_equat_major=b, radius_polar=c) elif model_name == 'parallelepiped': calculator = build_model('parallelepiped', n=n, a=a, b=b, c=c) else: raise ValueError("unknown model %s"%model_name) return calculator, (a, b, c) def main(model_name='parallelepiped', size=(10, 40, 100)): """ Show an interactive orientation and jitter demo. *model_name* is one of the models available in :func:`select_model`. """ # set up calculator calculator, size = select_calculator(model_name, n=150, size=size) ## uncomment to set an independent the colour range for every view ## If left commented, the colour range is fixed for all views calculator.limits = None ## use gaussian distribution unless testing integration #dist = 'rectangle' dist = 'gaussian' ## initial view #theta, dtheta = 70., 10. #phi, dphi = -45., 3. #psi, dpsi = -45., 3. theta, phi, psi = 0, 0, 0 dtheta, dphi, dpsi = 0, 0, 0 ## create the plot window #plt.hold(True) plt.set_cmap('gist_earth') plt.clf() #gs = gridspec.GridSpec(2,1,height_ratios=[4,1]) #ax = plt.subplot(gs[0], projection='3d') ax = plt.axes([0.0, 0.2, 1.0, 0.8], projection='3d') try: # CRUFT: not all versions of matplotlib accept 'square' 3d projection ax.axis('square') except Exception: pass axcolor = 'lightgoldenrodyellow' ## add control widgets to plot axtheta = plt.axes([0.1, 0.15, 0.45, 0.04], axisbg=axcolor) axphi = plt.axes([0.1, 0.1, 0.45, 0.04], axisbg=axcolor) axpsi = plt.axes([0.1, 0.05, 0.45, 0.04], axisbg=axcolor) stheta = Slider(axtheta, 'Theta', -90, 90, valinit=theta) sphi = Slider(axphi, 'Phi', -180, 180, valinit=phi) spsi = Slider(axpsi, 'Psi', -180, 180, valinit=psi) axdtheta = plt.axes([0.75, 0.15, 0.15, 0.04], axisbg=axcolor) axdphi = plt.axes([0.75, 0.1, 0.15, 0.04], axisbg=axcolor) axdpsi= plt.axes([0.75, 0.05, 0.15, 0.04], axisbg=axcolor) # Note: using ridiculous definition of rectangle distribution, whose width # in sasmodels is sqrt(3) times the given width. Divide by sqrt(3) to keep # the maximum width to 90. dlimit = 30 if dist == 'gaussian' else 90/sqrt(3) sdtheta = Slider(axdtheta, 'dTheta', 0, dlimit, valinit=dtheta) sdphi = Slider(axdphi, 'dPhi', 0, 2*dlimit, valinit=dphi) sdpsi = Slider(axdpsi, 'dPsi', 0, 2*dlimit, valinit=dpsi) ## callback to draw the new view def update(val, axis=None): view = stheta.val, sphi.val, spsi.val jitter = sdtheta.val, sdphi.val, sdpsi.val # set small jitter as 0 if multiple pd dims dims = sum(v > 0 for v in jitter) limit = [0, 0, 2, 5][dims] jitter = [0 if v < limit else v for v in jitter] ax.cla() draw_beam(ax, (0, 0)) draw_jitter(ax, view, jitter, dist=dist, size=size) #draw_jitter(ax, view, (0,0,0)) draw_mesh(ax, view, jitter, dist=dist) draw_scattering(calculator, ax, view, jitter, dist=dist) plt.gcf().canvas.draw() ## bind control widgets to view updater stheta.on_changed(lambda v: update(v,'theta')) sphi.on_changed(lambda v: update(v, 'phi')) spsi.on_changed(lambda v: update(v, 'psi')) sdtheta.on_changed(lambda v: update(v, 'dtheta')) sdphi.on_changed(lambda v: update(v, 'dphi')) sdpsi.on_changed(lambda v: update(v, 'dpsi')) ## initialize view update(None, 'phi') ## go interactive plt.show() if __name__ == "__main__": model_name = sys.argv[1] if len(sys.argv) > 1 else 'parallelepiped' size = tuple(int(v) for v in sys.argv[2].split(',')) if len(sys.argv) > 2 else (10, 40, 100) main(model_name, size)