from __future__ import division, print_function # Make sasmodels available on the path import sys, os BETA_DIR = os.path.dirname(os.path.realpath(__file__)) SASMODELS_DIR = os.path.dirname(os.path.dirname(BETA_DIR)) sys.path.insert(0, SASMODELS_DIR) from collections import namedtuple from matplotlib import pyplot as plt import numpy as np from numpy import pi, sin, cos, sqrt, fabs from numpy.polynomial.legendre import leggauss from scipy.special import j1 as J1 from numpy import inf from scipy.special import gammaln # type: ignore Theory = namedtuple('Theory', 'Q F1 F2 P S I Seff Ibeta') Theory.__new__.__defaults__ = (None,) * len(Theory._fields) #Used to calculate F(q) for the cylinder, sphere, ellipsoid models def sas_sinx_x(x): with np.errstate(all='ignore'): retvalue = sin(x)/x retvalue[x == 0.] = 1. return retvalue def sas_2J1x_x(x): with np.errstate(all='ignore'): retvalue = 2*J1(x)/x retvalue[x == 0] = 1. return retvalue def sas_3j1x_x(x): """return 3*j1(x)/x""" retvalue = np.empty_like(x) with np.errstate(all='ignore'): # GSL bessel_j1 taylor expansion index = (x < 0.25) y = x[index]**2 c1 = -1.0/10.0 c2 = +1.0/280.0 c3 = -1.0/15120.0 c4 = +1.0/1330560.0 c5 = -1.0/172972800.0 retvalue[index] = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*c5)))) index = ~index y = x[index] retvalue[index] = 3*(sin(y) - y*cos(y))/y**3 retvalue[x == 0.] = 1. return retvalue #Used to cross check my models with sasview models def build_model(model_name, q, **pars): from sasmodels.core import load_model_info, build_model as build_sasmodel from sasmodels.data import empty_data1D from sasmodels.direct_model import DirectModel model_info = load_model_info(model_name) model = build_sasmodel(model_info, dtype='double!') data = empty_data1D(q) calculator = DirectModel(data, model,cutoff=0) calculator.pars = pars.copy() calculator.pars.setdefault('background', 0) return calculator #gives the hardsphere structure factor that sasview uses def _hardsphere_simple(q, radius_effective, volfraction): CUTOFFHS = 0.05 if fabs(radius_effective) < 1.E-12: HARDSPH = 1.0 return HARDSPH X = 1.0/(1.0 -volfraction) D = X*X A = (1.+2.*volfraction)*D A *= A X = fabs(q*radius_effective*2.0) if X < 5.E-06: HARDSPH = 1./A return HARDSPH X2 = X*X B = (1.0 +0.5*volfraction)*D B *= B B *= -6.*volfraction G = 0.5*volfraction*A if X < CUTOFFHS: FF = 8.0*A +6.0*B + 4.0*G + ( -0.8*A -B/1.5 -0.5*G +(A/35. +0.0125*B +0.02*G)*X2)*X2 HARDSPH = 1./(1. + volfraction*FF ) return HARDSPH X4 = X2*X2 S, C = sin(X), cos(X) FF = ((G*( (4.*X2 -24.)*X*S -(X4 -12.*X2 +24.)*C +24. )/X2 + B*(2.*X*S -(X2-2.)*C -2.) )/X + A*(S-X*C))/X HARDSPH = 1./(1. + 24.*volfraction*FF/X2) return HARDSPH def hardsphere_simple(q, radius_effective, volfraction): SQ = [_hardsphere_simple(qk, radius_effective, volfraction) for qk in q] return np.array(SQ) #Used in gaussian quadrature for polydispersity #returns values and the probability of those values based on gaussian distribution N_GAUSS = 35 NSIGMA_GAUSS = 3 def gaussian_distribution(center, sigma, lb, ub): #3 standard deviations covers approx. 99.7% if sigma != 0: nsigmas = NSIGMA_GAUSS x = np.linspace(center-sigma*nsigmas, center+sigma*nsigmas, num=N_GAUSS) x = x[(x >= lb) & (x <= ub)] px = np.exp((x-center)**2 / (-2.0 * sigma * sigma)) return x, px else: return np.array([center]), np.array([1]) N_SCHULZ = 80 NSIGMA_SCHULZ = 8 def schulz_distribution(center, sigma, lb, ub): if sigma != 0: nsigmas = NSIGMA_SCHULZ x = np.linspace(center-sigma*nsigmas, center+sigma*nsigmas, num=N_SCHULZ) x = x[(x >= lb) & (x <= ub)] R = x/center z = (center/sigma)**2 arg = z*np.log(z) + (z-1)*np.log(R) - R*z - np.log(center) - gammaln(z) px = np.exp(arg) return x, px else: return np.array([center]), np.array([1]) #returns the effective radius used in sasview def ER_ellipsoid(radius_polar, radius_equatorial): ee = np.empty_like(radius_polar) if radius_polar > radius_equatorial: ee = (radius_polar**2 - radius_equatorial**2)/radius_polar**2 elif radius_polar < radius_equatorial: ee = (radius_equatorial**2 - radius_polar**2) / radius_equatorial**2 else: ee = 2*radius_polar if radius_polar * radius_equatorial != 0: bd = 1.0 - ee e1 = np.sqrt(ee) b1 = 1.0 + np.arcsin(e1) / (e1*np.sqrt(bd)) bL = (1.0 + e1) / (1.0 - e1) b2 = 1.0 + bd / 2 / e1 * np.log(bL) delta = 0.75 * b1 * b2 ddd = np.zeros_like(radius_polar) ddd = 2.0*(delta + 1.0)*radius_polar*radius_equatorial**2 return 0.5*ddd**(1.0 / 3.0) def ellipsoid_volume(radius_polar, radius_equatorial): volume = (4./3.)*pi*radius_polar*radius_equatorial**2 return volume # F1 is F(q) # F2 is F(g)^2 #IQM is I(q) with monodispersity #IQSM is I(q) with structure factor S(q) and monodispersity #IQBM is I(q) with Beta Approximation and monodispersity #SQ is monodisperse approach for structure factor #SQ_EFF is the effective structure factor from beta approx def ellipsoid_theta(q, radius_polar, radius_equatorial, sld, sld_solvent, volfraction=0, radius_effective=None): #creates values z and corresponding probabilities w from legendre-gauss quadrature volume = ellipsoid_volume(radius_polar, radius_equatorial) z, w = leggauss(76) F1 = np.zeros_like(q) F2 = np.zeros_like(q) #use a u subsition(u=cos) and then u=(z+1)/2 to change integration from #0->2pi with respect to alpha to -1->1 with respect to z, allowing us to use #legendre-gauss quadrature for k, qk in enumerate(q): r = sqrt(radius_equatorial**2*(1-((z+1)/2)**2)+radius_polar**2*((z+1)/2)**2) form = (sld-sld_solvent)*volume*sas_3j1x_x(qk*r) F2[k] = np.sum(w*form**2) F1[k] = np.sum(w*form) #the 1/2 comes from the change of variables mentioned above F2 = F2/2.0 F1 = F1/2.0 if radius_effective is None: radius_effective = ER_ellipsoid(radius_polar,radius_equatorial) SQ = hardsphere_simple(q, radius_effective, volfraction) SQ_EFF = 1 + F1**2/F2*(SQ - 1) IQM = 1e-4*F2/volume IQSM = volfraction*IQM*SQ IQBM = volfraction*IQM*SQ_EFF return Theory(Q=q, F1=F1, F2=F2, P=IQM, S=SQ, I=IQSM, Seff=SQ_EFF, Ibeta=IQBM) #IQD is I(q) polydispursed, IQSD is I(q)S(q) polydispursed, etc. #IQBD HAS NOT BEEN CROSS CHECKED AT ALL def ellipsoid_pe(q, radius_polar, radius_equatorial, sld, sld_solvent, radius_polar_pd=0.1, radius_equatorial_pd=0.1, radius_polar_pd_type='gaussian', radius_equatorial_pd_type='gaussian', volfraction=0, radius_effective=None, background=0, scale=1, norm='sasview'): if norm not in ['sasview', 'sasfit', 'yun']: raise TypeError("unknown norm "+norm) if radius_polar_pd_type == 'gaussian': Rp_val, Rp_prob = gaussian_distribution(radius_polar, radius_polar_pd*radius_polar, 0, inf) elif radius_polar_pd_type == 'schulz': Rp_val, Rp_prob = schulz_distribution(radius_polar, radius_polar_pd*radius_polar, 0, inf) if radius_equatorial_pd_type == 'gaussian': Re_val, Re_prob = gaussian_distribution(radius_equatorial, radius_equatorial_pd*radius_equatorial, 0, inf) elif radius_equatorial_pd_type == 'schulz': Re_val, Re_prob = schulz_distribution(radius_equatorial, radius_equatorial_pd*radius_equatorial, 0, inf) total_weight = total_volume = 0 radius_eff = 0 F1, F2 = np.zeros_like(q), np.zeros_like(q) for k, Rpk in enumerate(Rp_val): print("ellipsoid cycle", k, "of", len(Rp_val)) for i, Rei in enumerate(Re_val): theory = ellipsoid_theta(q, Rpk, Rei, sld, sld_solvent) volume = ellipsoid_volume(Rpk, Rei) weight = Rp_prob[k]*Re_prob[i] total_weight += weight total_volume += weight*volume F1 += theory.F1*weight F2 += theory.F2*weight radius_eff += weight*ER_ellipsoid(Rpk, Rei) F1 /= total_weight F2 /= total_weight average_volume = total_volume/total_weight if radius_effective is None: radius_effective = radius_eff/total_weight if norm == 'sasfit': IQD = F2 elif norm == 'sasview': # Note: internally, sasview uses F2/total_volume because: # average_volume = total_volume/total_weight # F2/total_weight / average_volume # = F2/total_weight / total_volume/total_weight # = F2/total_volume IQD = F2/average_volume*1e-4*volfraction F1 *= 1e-2 # Yun is using sld in 1/A^2, not 1e-6/A^2 F2 *= 1e-4 elif norm == 'yun': F1 *= 1e-6 # Yun is using sld in 1/A^2, not 1e-6/A^2 F2 *= 1e-12 IQD = F2/average_volume*1e8*volfraction SQ = hardsphere_simple(q, radius_effective, volfraction) beta = F1**2/F2 SQ_EFF = 1 + beta*(SQ - 1) IQSD = IQD*SQ IQBD = IQD*SQ_EFF return Theory(Q=q, F1=F1, F2=F2, P=IQD, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) #polydispersity for sphere def sphere_r(q,radius,sld,sld_solvent, radius_pd=0.1, radius_pd_type='gaussian', volfraction=0, radius_effective=None, background=0, scale=1, norm='sasview'): if norm not in ['sasview', 'sasfit', 'yun']: raise TypeError("unknown norm "+norm) if radius_pd_type == 'gaussian': radius_val, radius_prob = gaussian_distribution(radius, radius_pd*radius, 0, inf) elif radius_pd_type == 'schulz': radius_val, radius_prob = schulz_distribution(radius, radius_pd*radius, 0, inf) total_weight = total_volume = 0 F1 = np.zeros_like(q) F2 = np.zeros_like(q) for k, rk in enumerate(radius_val): volume = 4./3.*pi*rk**3 total_weight += radius_prob[k] total_volume += radius_prob[k]*volume form = (sld-sld_solvent)*volume*sas_3j1x_x(q*rk) F2 += radius_prob[k]*form**2 F1 += radius_prob[k]*form F1 /= total_weight F2 /= total_weight average_volume = total_volume/total_weight if radius_effective is None: radius_effective = radius average_volume = total_volume/total_weight if norm == 'sasfit': IQD = F2 elif norm == 'sasview': IQD = F2/average_volume*1e-4*volfraction elif norm == 'yun': F1 *= 1e-6 # Yun is using sld in 1/A^2, not 1e-6/A^2 F2 *= 1e-12 IQD = F2/average_volume*1e8*volfraction SQ = hardsphere_simple(q, radius_effective, volfraction) beta = F1**2/F2 SQ_EFF = 1 + beta*(SQ - 1) IQSD = IQD*SQ IQBD = IQD*SQ_EFF return Theory(Q=q, F1=F1, F2=F2, P=IQD, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) ############################################################################### ############################################################################### ############################################################################### ################## ################## ################## TESTS ################## ################## ################## ############################################################################### ############################################################################### ############################################################################### def popn(d, keys): """ Splits a dict into two, with any key of *d* which is in *keys* removed from *d* and added to *b*. Returns *b*. """ b = {} for k in keys: try: b[k] = d.pop(k) except KeyError: pass return b def sasmodels_theory(q, Pname, **pars): """ Call sasmodels to compute the model with and without a hard sphere structure factor. """ #mono_pars = {k: (0 if k.endswith('_pd') else v) for k, v in pars.items()} Ppars = pars.copy() Spars = popn(Ppars, ['radius_effective', 'volfraction']) Ipars = pars.copy() # Autofill npts and nsigmas for the given pd type for k, v in pars.items(): if k.endswith("_pd_type"): if v == "gaussian": n, nsigmas = N_GAUSS, NSIGMA_GAUSS elif v == "schulz": n, nsigmas = N_SCHULZ, NSIGMA_SCHULZ Ppars.setdefault(k.replace("_pd_type", "_pd_n"), n) Ppars.setdefault(k.replace("_pd_type", "_pd_nsigma"), nsigmas) Ipars.setdefault(k.replace("_pd_type", "_pd_n"), n) Ipars.setdefault(k.replace("_pd_type", "_pd_nsigma"), nsigmas) #Ppars['scale'] = Spars.get('volfraction', 1) P = build_model(Pname, q) S = build_model("hardsphere", q) I = build_model(Pname+"@hardsphere", q) Pq = P(**Ppars)*pars.get('volfraction', 1) Sq = S(**Spars) Iq = I(**Ipars) #Iq = Pq*Sq*pars.get('volfraction', 1) #Sq = Iq/Pq #Iq = None#= Sq = None r = dict(I._kernel.results()) return Theory(Q=q, F1=None, F2=None, P=Pq, S=None, I=None, Seff=r["S_eff(Q)"], Ibeta=Iq) def compare(title, target, actual, fields='F1 F2 P S I Seff Ibeta'): """ Plot fields in common between target and actual, along with relative error. """ available = [s for s in fields.split() if getattr(target, s) is not None and getattr(actual, s) is not None] rows = len(available) for row, field in enumerate(available): Q = target.Q I1, I2 = getattr(target, field), getattr(actual, field) plt.subplot(rows, 2, 2*row+1) plt.loglog(Q, abs(I1), label="target "+field) plt.loglog(Q, abs(I2), label="value "+field) #plt.legend(loc="upper left", bbox_to_anchor=(1,1)) plt.legend(loc='lower left') plt.subplot(rows, 2, 2*row+2) plt.semilogx(Q, I2/I1 - 1, label="relative error") #plt.semilogx(Q, I1/I2 - 1, label="relative error") plt.tight_layout() plt.suptitle(title) plt.show() def data_file(name): return os.path.join(BETA_DIR, 'data_files', name) def load_sasfit(path): data = np.loadtxt(path, dtype=str, delimiter=';').T data = np.vstack((map(float, v) for v in data[0:2])) return data COMPARISON = {} # Type: Dict[(str,str,str)] -> Callable[(), None] def compare_sasview_sphere(pd_type='schulz'): q = np.logspace(-5, 0, 250) model = 'sphere' pars = dict( radius=20, sld=4, sld_solvent=1, background=0, radius_pd=.1, radius_pd_type=pd_type, volfraction=0.15, #radius_effective=12.59921049894873, # equivalent average sphere radius ) target = sasmodels_theory(q, model, **pars) actual = sphere_r(q, norm='sasview', **pars) title = " ".join(("sasmodels", model, pd_type)) compare(title, target, actual) COMPARISON[('sasview', 'sphere', 'gaussian')] = lambda: compare_sasview_sphere(pd_type='gaussian') COMPARISON[('sasview', 'sphere', 'schulz')] = lambda: compare_sasview_sphere(pd_type='schulz') def compare_sasview_ellipsoid(pd_type='gaussian'): q = np.logspace(-5, 0, 50) model = 'ellipsoid' pars = dict( radius_polar=20, radius_equatorial=400, sld=4, sld_solvent=1, background=0, radius_polar_pd=0.1, radius_polar_pd_type=pd_type, radius_equatorial_pd=0.1, radius_equatorial_pd_type=pd_type, volfraction=0.15, radius_effective=270.7543927018, #radius_effective=12.59921049894873, ) target = sasmodels_theory(q, model, effective_radius_mode=0, structure_factor_mode=1, **pars) actual = ellipsoid_pe(q, norm='sasview', **pars) title = " ".join(("sasmodels", model, pd_type)) compare(title, target, actual) COMPARISON[('sasview', 'ellipsoid', 'gaussian')] = lambda: compare_sasview_ellipsoid(pd_type='gaussian') COMPARISON[('sasview', 'ellipsoid', 'schulz')] = lambda: compare_sasview_ellipsoid(pd_type='schulz') def compare_yun_ellipsoid_mono(): pars = { 'radius_polar': 20, 'radius_polar_pd': 0, 'radius_polar_pd_type': 'gaussian', 'radius_equatorial': 10, 'radius_equatorial_pd': 0, 'radius_equatorial_pd_type': 'gaussian', 'sld': 2, 'sld_solvent': 1, 'volfraction': 0.15, # Yun uses radius for same volume sphere for effective radius # whereas sasview uses the average curvature. 'radius_effective': 12.59921049894873, } data = np.loadtxt(data_file('yun_ellipsoid.dat'),skiprows=2).T Q = data[0] F1 = data[1] P = data[3]*pars['volfraction'] S = data[5] Seff = data[6] target = Theory(Q=Q, F1=F1, P=P, S=S, Seff=Seff) actual = ellipsoid_pe(Q, norm='yun', **pars) title = " ".join(("yun", "ellipsoid", "no pd")) #compare(title, target, actual, fields="P S I Seff Ibeta") compare(title, target, actual) COMPARISON[('yun', 'ellipsoid', 'gaussian')] = compare_yun_ellipsoid_mono COMPARISON[('yun', 'ellipsoid', 'schulz')] = compare_yun_ellipsoid_mono def compare_yun_sphere_gauss(): # Note: yun uses gauss limits from R0/10 to R0 + 5 sigma steps sigma/100 # With pd = 0.1, that's 14 sigma and 1400 points. pars = { 'radius': 20, 'radius_pd': 0.1, 'radius_pd_type': 'gaussian', 'sld': 6, 'sld_solvent': 0, 'volfraction': 0.1, } data = np.loadtxt(data_file('testPolydisperseGaussianSphere.dat'), skiprows=2).T Q = data[0] F1 = data[1] F2 = data[2] P = data[3] S = data[5] Seff = data[6] target = Theory(Q=Q, F1=F1, P=P, S=S, Seff=Seff) actual = sphere_r(Q, norm='yun', **pars) title = " ".join(("yun", "sphere", "10% dispersion 10% Vf")) compare(title, target, actual) data = np.loadtxt(data_file('testPolydisperseGaussianSphere2.dat'), skiprows=2).T pars.update(radius_pd=0.15) Q = data[0] F1 = data[1] F2 = data[2] P = data[3] S = data[5] Seff = data[6] target = Theory(Q=Q, F1=F1, P=P, S=S, Seff=Seff) actual = sphere_r(Q, norm='yun', **pars) title = " ".join(("yun", "sphere", "15% dispersion 10% Vf")) compare(title, target, actual) COMPARISON[('yun', 'sphere', 'gaussian')] = compare_yun_sphere_gauss def compare_sasfit_sphere_gauss(): #N=1,s=2,X0=20,distr radius R=20,eta_core=4,eta_solv=1,.3 pars = { 'radius': 20, 'radius_pd': 0.1, 'radius_pd_type': 'gaussian', 'sld': 4, 'sld_solvent': 1, 'volfraction': 0.3, } Q, IQ = load_sasfit(data_file('sasfit_sphere_IQD.txt')) Q, IQSD = load_sasfit(data_file('sasfit_sphere_IQSD.txt')) Q, IQBD = load_sasfit(data_file('sasfit_sphere_IQBD.txt')) Q, SQ = load_sasfit(data_file('sasfit_polydisperse_sphere_sq.txt')) Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_sphere_sqeff.txt')) target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) actual = sphere_r(Q, norm="sasfit", **pars) title = " ".join(("sasfit", "sphere", "pd=10% gaussian")) compare(title, target, actual) #compare(title, target, actual, fields="P") COMPARISON[('sasfit', 'sphere', 'gaussian')] = compare_sasfit_sphere_gauss def compare_sasfit_sphere_schulz(): #radius=20,sld=4,sld_solvent=1,volfraction=0.3,radius_pd=0.1 #We have scaled the output from sasfit by 1e-4*volume*volfraction #0.10050378152592121 pars = { 'radius': 20, 'radius_pd': 0.1, 'radius_pd_type': 'schulz', 'sld': 4, 'sld_solvent': 1, 'volfraction': 0.3, } Q, IQ = load_sasfit(data_file('sasfit_sphere_schulz_IQD.txt')) Q, IQSD = load_sasfit(data_file('sasfit_sphere_schulz_IQSD.txt')) Q, IQBD = load_sasfit(data_file('sasfit_sphere_schulz_IQBD.txt')) target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=None, I=IQSD, Seff=None, Ibeta=IQBD) actual = sphere_r(Q, norm="sasfit", **pars) title = " ".join(("sasfit", "sphere", "pd=10% schulz")) compare(title, target, actual) COMPARISON[('sasfit', 'sphere', 'schulz')] = compare_sasfit_sphere_schulz def compare_sasfit_ellipsoid_schulz(): #polarradius=20, equatorialradius=10, sld=4,sld_solvent=1,volfraction=0.3,radius_polar_pd=0.1 #Effective radius =13.1353356684 #We have scaled the output from sasfit by 1e-4*volume*volfraction #0.10050378152592121 pars = { 'radius_polar': 20, 'radius_polar_pd': 0.1, 'radius_polar_pd_type': 'schulz', 'radius_equatorial': 10, 'radius_equatorial_pd': 0., 'radius_equatorial_pd_type': 'schulz', 'sld': 4, 'sld_solvent': 1, 'volfraction': 0.3, 'radius_effective': 13.1353356684, } Q, IQ = load_sasfit(data_file('sasfit_ellipsoid_shulz_IQD.txt')) Q, IQSD = load_sasfit(data_file('sasfit_ellipsoid_shulz_IQSD.txt')) Q, IQBD = load_sasfit(data_file('sasfit_ellipsoid_shulz_IQBD.txt')) target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=None, I=IQSD, Seff=None, Ibeta=IQBD) actual = ellipsoid_pe(Q, norm="sasfit", **pars) title = " ".join(("sasfit", "ellipsoid", "pd=10% schulz")) compare(title, target, actual) COMPARISON[('sasfit', 'ellipsoid', 'schulz')] = compare_sasfit_ellipsoid_schulz def compare_sasfit_ellipsoid_gaussian(): pars = { 'radius_polar': 20, 'radius_polar_pd': 0, 'radius_polar_pd_type': 'gaussian', 'radius_equatorial': 10, 'radius_equatorial_pd': 0, 'radius_equatorial_pd_type': 'gaussian', 'sld': 4, 'sld_solvent': 1, 'volfraction': 0, 'radius_effective': None, } #Rp=20,Re=10,eta_core=4,eta_solv=1 Q, PQ0 = load_sasfit(data_file('sasfit_ellipsoid_IQM.txt')) pars.update(volfraction=0, radius_polar_pd=0.0, radius_equatorial_pd=0, radius_effective=None) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, P=PQ0) compare("sasfit ellipsoid no poly", target, actual); plt.show() #N=1,s=2,X0=20,distr 10% polar Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly Q, PQ_Rp10 = load_sasfit(data_file('sasfit_ellipsoid_IQD.txt')) pars.update(volfraction=0, radius_polar_pd=0.1, radius_equatorial_pd=0.0, radius_effective=None) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, P=PQ_Rp10) compare("sasfit ellipsoid P(Q) 10% Rp", target, actual); plt.show() #N=1,s=1,X0=10,distr 10% equatorial Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly Q, PQ_Re10 = load_sasfit(data_file('sasfit_ellipsoid_IQD2.txt')) pars.update(volfraction=0, radius_polar_pd=0.0, radius_equatorial_pd=0.1, radius_effective=None) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, P=PQ_Re10) compare("sasfit ellipsoid P(Q) 10% Re", target, actual); plt.show() #N=1,s=6,X0=20,distr 30% polar Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly Q, PQ_Rp30 = load_sasfit(data_file('sasfit_ellipsoid_IQD3.txt')) pars.update(volfraction=0, radius_polar_pd=0.3, radius_equatorial_pd=0.0, radius_effective=None) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, P=PQ_Rp30) compare("sasfit ellipsoid P(Q) 30% Rp", target, actual); plt.show() #N=1,s=3,X0=10,distr 30% equatorial Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly Q, PQ_Re30 = load_sasfit(data_file('sasfit_ellipsoid_IQD4.txt')) pars.update(volfraction=0, radius_polar_pd=0.0, radius_equatorial_pd=0.3, radius_effective=None) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, P=PQ_Re30) compare("sasfit ellipsoid P(Q) 30% Re", target, actual); plt.show() #N=1,s=12,X0=20,distr 60% polar Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly Q, PQ_Rp60 = load_sasfit(data_file('sasfit_ellipsoid_IQD5.txt')) pars.update(volfraction=0, radius_polar_pd=0.6, radius_equatorial_pd=0.0, radius_effective=None) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, P=PQ_Rp60) compare("sasfit ellipsoid P(Q) 60% Rp", target, actual); plt.show() #N=1,s=6,X0=10,distr 60% equatorial Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly Q, PQ_Re60 = load_sasfit(data_file('sasfit_ellipsoid_IQD6.txt')) pars.update(volfraction=0, radius_polar_pd=0.0, radius_equatorial_pd=0.6, radius_effective=None) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, P=PQ_Re60) compare("sasfit ellipsoid P(Q) 60% Re", target, actual); plt.show() #N=1,s=2,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.1354236254,.15 Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq.txt')) Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff.txt')) pars.update(volfraction=0.15, radius_polar_pd=0.1, radius_equatorial_pd=0, radius_effective=13.1354236254) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) compare("sasfit ellipsoid P(Q) 10% Rp 15% Vf", target, actual); plt.show() #N=1,s=6,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.0901197149,.15 Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq2.txt')) Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff2.txt')) pars.update(volfraction=0.15, radius_polar_pd=0.3, radius_equatorial_pd=0, radius_effective=13.0901197149) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) compare("sasfit ellipsoid P(Q) 30% Rp 15% Vf", target, actual); plt.show() #N=1,s=12,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.336060917,.15 Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq3.txt')) Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff3.txt')) pars.update(volfraction=0.15, radius_polar_pd=0.6, radius_equatorial_pd=0, radius_effective=13.336060917) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) compare("sasfit ellipsoid P(Q) 60% Rp 15% Vf", target, actual); plt.show() #N=1,s=2,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.1354236254,.3 Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq4.txt')) Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff4.txt')) pars.update(volfraction=0.3, radius_polar_pd=0.1, radius_equatorial_pd=0, radius_effective=13.1354236254) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) compare("sasfit ellipsoid P(Q) 10% Rp 30% Vf", target, actual); plt.show() #N=1,s=6,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.0901197149,.3 Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq5.txt')) Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff5.txt')) pars.update(volfraction=0.3, radius_polar_pd=0.3, radius_equatorial_pd=0, radius_effective=13.0901197149) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) compare("sasfit ellipsoid P(Q) 30% Rp 30% Vf", target, actual); plt.show() #N=1,s=12,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.336060917,.3 Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq6.txt')) Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff6.txt')) pars.update(volfraction=0.3, radius_polar_pd=0.6, radius_equatorial_pd=0, radius_effective=13.336060917) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) compare("sasfit ellipsoid P(Q) 60% Rp 30% Vf", target, actual); plt.show() #N=1,s=2,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.1354236254,.6 Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq7.txt')) Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff7.txt')) pars.update(volfraction=0.6, radius_polar_pd=0.1, radius_equatorial_pd=0, radius_effective=13.1354236254) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) compare("sasfit ellipsoid P(Q) 10% Rp 60% Vf", target, actual); plt.show() #N=1,s=6,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.0901197149,.6 Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq8.txt')) Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff8.txt')) pars.update(volfraction=0.6, radius_polar_pd=0.3, radius_equatorial_pd=0, radius_effective=13.0901197149) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) compare("sasfit ellipsoid P(Q) 30% Rp 60% Vf", target, actual); plt.show() #N=1,s=12,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.336060917,.6 Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq9.txt')) Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff9.txt')) pars.update(volfraction=0.6, radius_polar_pd=0.6, radius_equatorial_pd=0, radius_effective=13.336060917) actual = ellipsoid_pe(Q, norm='sasfit', **pars) target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) compare("sasfit ellipsoid P(Q) 60% Rp 60% Vf", target, actual); plt.show() COMPARISON[('sasfit', 'ellipsoid', 'gaussian')] = compare_sasfit_ellipsoid_gaussian def main(): key = tuple(sys.argv[1:]) if key not in COMPARISON: print("usage: sasfit_compare.py [sasview|sasfit|yun] [sphere|ellipsoid] [gaussian|schulz]") return comparison = COMPARISON[key] comparison() if __name__ == "__main__": main()