r""" Show numerical precision of $2 J_1(x)/x$. """ import numpy as np from sympy.mpmath import mp #import matplotlib; matplotlib.use('TkAgg') import pylab SHOW_DIFF = True # True if show diff rather than function value #SHOW_DIFF = False # True if show diff rather than function value LINEAR_X = False # True if q is linearly spaced instead of log spaced #LINEAR_X = True # True if q is linearly spaced instead of log spaced FUNCTION = "2*J1(x)/x" def mp_fn(vec, bits=500): """ Direct calculation using sympy multiprecision library. """ with mp.workprec(bits): return [_mp_fn(mp.mpf(x)) for x in vec] def _mp_fn(x): """ Actual function that gets evaluated. The caller just vectorizes. """ return mp.mpf(2)*mp.j1(x)/x def np_fn(x, dtype): """ Direct calculation using scipy. """ from scipy.special import j1 as J1 x = np.asarray(x, dtype) return np.asarray(2, dtype)*J1(x)/x def sasmodels_fn(x, dtype, platform='ocl'): """ Calculation using pade approximant. """ from sasmodels import core, data, direct_model model = core.load_model('bessel', dtype=dtype) calculator = direct_model.DirectModel(data.empty_data1D(x), model) return calculator(background=0) def plotdiff(x, target, actual, label): """ Plot the computed value. Use relative error if SHOW_DIFF, otherwise just plot the value directly. """ if SHOW_DIFF: err = abs((target-actual)/target) #err = np.clip(err, 0, 1) pylab.loglog(x, err, '-', label=label) else: limits = np.min(target), np.max(target) pylab.semilogx(x, np.clip(actual,*limits), '-', label=label) def compare(x, precision, target): r""" Compare the different computation methods using the given precision. """ #plotdiff(x, target, mp_fn(x, 11), 'mp 11 bits') plotdiff(x, target, np_fn(x, precision), 'numpy '+precision) plotdiff(x, target, sasmodels_fn(x, precision, 0), 'sasmodels '+precision) pylab.xlabel("qr (1/Ang)") if SHOW_DIFF: pylab.ylabel("relative error") else: pylab.ylabel(FUNCTION) pylab.semilogx(x, target, '-', label="true value") if LINEAR_X: pylab.xscale('linear') def main(): r""" Compare accuracy of different methods for computing $3 j_1(x)/x$. :return: """ if LINEAR_X: qr = np.linspace(1,1000,2000) else: qr = np.logspace(-3,5,400) target = np.asarray(mp_fn(qr), 'double') pylab.subplot(121) compare(qr, 'single', target) pylab.legend(loc='best') pylab.subplot(122) compare(qr, 'double', target) pylab.legend(loc='best') pylab.suptitle(FUNCTION) if __name__ == "__main__": #print "\n".join(str(x) for x in mp_J1c([1e-6,1e-5,1e-4,1e-3])) main() pylab.show()