source: sasmodels/doc/guide/plugin.rst

Last change on this file was e15a822, checked in by smk78, 5 years ago

Fix broken math formatting in plugin.rst

  • Property mode set to 100644
File size: 51.9 KB
RevLine 
[990d8df]1.. _Writing_a_Plugin:
2
3Writing a Plugin Model
4======================
5
6Overview
7^^^^^^^^
8
9In addition to the models provided with the sasmodels package, you are free to
10create your own models.
11
12Models can be of three types:
13
14- A pure python model : Example -
15  `broadpeak.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/broad_peak.py>`_
16
17- A python model with embedded C : Example -
18  `sphere.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/sphere.py>`_
19
20- A python wrapper with separate C code : Example -
21  `cylinder.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.py>`_,
22  `cylinder.c <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.c>`_
23
24When using SasView, plugin models should be saved to the SasView
25*plugin_models* folder *C:\\Users\\{username}\\.sasview\\plugin_models*
26(on Windows) or */Users/{username}/.sasview\\plugin_models* (on Mac).
27The next time SasView is started it will compile the plugin and add
28it to the list of *Plugin Models* in a FitPage.  Scripts can load
29the models from anywhere.
30
31The built-in modules are available in the *models* subdirectory
32of the sasmodels package.  For SasView on Windows, these will
33be found in *C:\\Program Files (x86)\\SasView\\sasmodels-data\\models*.
34On Mac OSX, these will be within the application bundle as
35*/Applications/SasView 4.0.app/Contents/Resources/sasmodels-data/models*.
36
37Other models are available for download from the
38`Model Marketplace <http://marketplace.sasview.org/>`_. You can contribute your
39own models to the Marketplace as well.
40
41Create New Model Files
42^^^^^^^^^^^^^^^^^^^^^^
43
44Copy the appropriate files to your plugin models directory (we recommend
45using the examples above as templates) as mymodel.py (and mymodel.c, etc)
46as required, where "mymodel" is the name for the model you are creating.
47
48*Please follow these naming rules:*
49
50- No capitalization and thus no CamelCase
51- If necessary use underscore to separate words (i.e. barbell not BarBell or
52  broad_peak not BroadPeak)
53- Do not include "model" in the name (i.e. barbell not BarBellModel)
54
55
56Edit New Model Files
57^^^^^^^^^^^^^^^^^^^^
58
59Model Contents
60..............
61
62The model interface definition is in the .py file.  This file contains:
63
64- a **model name**:
65   - this is the **name** string in the *.py* file
66   - titles should be:
67
68    - all in *lower* case
69    - without spaces (use underscores to separate words instead)
70    - without any capitalization or CamelCase
71    - without incorporating the word "model"
72    - examples: *barbell* **not** *BarBell*; *broad_peak* **not** *BroadPeak*;
73      *barbell* **not** *BarBellModel*
74
75- a **model title**:
76   - this is the **title** string in the *.py* file
77   - this is a one or two line description of the model, which will appear
78     at the start of the model documentation and as a tooltip in the SasView GUI
79
[3048ec6]80- a **short description**:
[990d8df]81   - this is the **description** string in the *.py* file
82   - this is a medium length description which appears when you click
83     *Description* on the model FitPage
84
85- a **parameter table**:
86   - this will be auto-generated from the *parameters* in the *.py* file
87
88- a **long description**:
89   - this is ReStructuredText enclosed between the r""" and """ delimiters
90     at the top of the *.py* file
91   - what you write here is abstracted into the SasView help documentation
92   - this is what other users will refer to when they want to know what
93     your model does; so please be helpful!
94
95- a **definition** of the model:
96   - as part of the **long description**
97
98- a **formula** defining the function the model calculates:
99   - as part of the **long description**
100
101- an **explanation of the parameters**:
102   - as part of the **long description**
103   - explaining how the symbols in the formula map to the model parameters
104
105- a **plot** of the function, with a **figure caption**:
106   - this is automatically generated from your default parameters
107
108- at least one **reference**:
109   - as part of the **long description**
110   - specifying where the reader can obtain more information about the model
111
112- the **name of the author**
113   - as part of the **long description**
114   - the *.py* file should also contain a comment identifying *who*
115     converted/created the model file
116
117Models that do not conform to these requirements will *never* be incorporated
118into the built-in library.
119
120
121Model Documentation
122...................
123
124The *.py* file starts with an r (for raw) and three sets of quotes
125to start the doc string and ends with a second set of three quotes.
126For example::
127
128    r"""
129    Definition
130    ----------
131
132    The 1D scattering intensity of the sphere is calculated in the following
133    way (Guinier, 1955)
134
135    .. math::
136
137        I(q) = \frac{\text{scale}}{V} \cdot \left[
138            3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3}
139            \right]^2 + \text{background}
140
141    where *scale* is a volume fraction, $V$ is the volume of the scatterer,
142    $r$ is the radius of the sphere and *background* is the background level.
143    *sld* and *sld_solvent* are the scattering length densities (SLDs) of the
144    scatterer and the solvent respectively, whose difference is $\Delta\rho$.
145
146    You can included figures in your documentation, as in the following
147    figure for the cylinder model.
148
149    .. figure:: img/cylinder_angle_definition.jpg
150
151        Definition of the angles for oriented cylinders.
152
153    References
154    ----------
155
156    A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*,
157    John Wiley and Sons, New York, (1955)
158    """
159
160This is where the FULL documentation for the model goes (to be picked up by
161the automatic documentation system).  Although it feels odd, you
162should start the documentation immediately with the **definition**---the model
163name, a brief description and the parameter table are automatically inserted
164above the definition, and the a plot of the model is automatically inserted
165before the **reference**.
166
167Figures can be included using the *figure* command, with the name
168of the *.png* file containing the figure and a caption to appear below the
169figure.  Figure numbers will be added automatically.
170
171See this `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_
172for a quick guide to the documentation layout commands, or the
173`Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_ for
174complete details.
175
176The model should include a **formula** written using LaTeX markup.
177The example above uses the *math* command to make a displayed equation.  You
178can also use *\$formula\$* for an inline formula. This is handy for defining
179the relationship between the model parameters and formula variables, such
180as the phrase "\$r\$ is the radius" used above.  The live demo MathJax
181page `<http://www.mathjax.org/>`_ is handy for checking that the equations
182will look like you intend.
183
184Math layout uses the `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_
185package for aligning equations (see amsldoc.pdf on that page for complete
186documentation). You will automatically be in an aligned environment, with
187blank lines separating the lines of the equation.  Place an ampersand before
188the operator on which to align.  For example::
189
190    .. math::
191
192      x + y &= 1 \\
193      y &= x - 1
194
195produces
196
197.. math::
198
199      x + y &= 1 \\
200      y &= x - 1
201
202If you need more control, use::
203
204    .. math::
205        :nowrap:
206
207
208Model Definition
209................
210
211Following the documentation string, there are a series of definitions::
212
213    name = "sphere"  # optional: defaults to the filename without .py
214
215    title = "Spheres with uniform scattering length density"
216
217    description = """\
218    P(q)=(scale/V)*[3V(sld-sld_solvent)*(sin(qr)-qr cos(qr))
219                    /(qr)^3]^2 + background
220        r: radius of sphere
221        V: The volume of the scatter
222        sld: the SLD of the sphere
223        sld_solvent: the SLD of the solvent
224    """
225
226    category = "shape:sphere"
227
228    single = True   # optional: defaults to True
229
230    opencl = False  # optional: defaults to False
231
232    structure_factor = False  # optional: defaults to False
233
234**name = "mymodel"** defines the name of the model that is shown to the user.
[3048ec6]235If it is not provided it will use the name of the model file. The name must
236be a valid variable name, starting with a letter and contains only letters,
237numbers or underscore.  Spaces, dashes, and other symbols are not permitted.
[990d8df]238
239**title = "short description"** is short description of the model which
240is included after the model name in the automatically generated documentation.
241The title can also be used for a tooltip.
242
243**description = """doc string"""** is a longer description of the model. It
244shows up when you press the "Description" button of the SasView FitPage.
245It should give a brief description of the equation and the parameters
246without the need to read the entire model documentation. The triple quotes
247allow you to write the description over multiple lines. Keep the lines
248short since the GUI will wrap each one separately if they are too long.
249**Make sure the parameter names in the description match the model definition!**
250
251**category = "shape:sphere"** defines where the model will appear in the
252model documentation.  In this example, the model will appear alphabetically
253in the list of spheroid models in the *Shape* category.
254
255**single = True** indicates that the model can be run using single
256precision floating point values.  Set it to False if the numerical
257calculation for the model is unstable, which is the case for about 20 of
258the built in models.  It is worthwhile modifying the calculation to support
259single precision, allowing models to run up to 10 times faster.  The
260section `Test_Your_New_Model`_  describes how to compare model values for
261single vs. double precision so you can decide if you need to set
262single to False.
263
264**opencl = False** indicates that the model should not be run using OpenCL.
265This may be because the model definition includes code that cannot be
266compiled for the GPU (for example, goto statements).  It can also be used
267for large models which can't run on most GPUs.  This flag has not been
268used on any of the built in models; models which were failing were
269streamlined so this flag was not necessary.
270
271**structure_factor = True** indicates that the model can be used as a
272structure factor to account for interactions between particles.  See
273`Form_Factors`_ for more details.
274
[9d8a027]275**model_info = ...** lets you define a model directly, for example, by
276loading and modifying existing models.  This is done implicitly by
277:func:`sasmodels.core.load_model_info`, which can create a mixture model
278from a pair of existing models.  For example::
279
280    from sasmodels.core import load_model_info
281    model_info = load_model_info('sphere+cylinder')
282
283See :class:`sasmodels.modelinfo.ModelInfo` for details about the model
284attributes that are defined.
285
[990d8df]286Model Parameters
287................
288
289Next comes the parameter table.  For example::
290
291    # pylint: disable=bad-whitespace, line-too-long
292    #   ["name",        "units", default, [min, max], "type",    "description"],
293    parameters = [
294        ["sld",         "1e-6/Ang^2",  1, [-inf, inf], "sld",    "Layer scattering length density"],
295        ["sld_solvent", "1e-6/Ang^2",  6, [-inf, inf], "sld",    "Solvent scattering length density"],
296        ["radius",      "Ang",        50, [0, inf],    "volume", "Sphere radius"],
297    ]
298    # pylint: enable=bad-whitespace, line-too-long
299
300**parameters = [["name", "units", default, [min,max], "type", "tooltip"],...]**
301defines the parameters that form the model.
302
303**Note: The order of the parameters in the definition will be the order of the
[31fc4ad]304parameters in the user interface and the order of the parameters in Fq(), Iq(),
[e5cb3df]305Iqac(), Iqabc(), radius_effective(), form_volume() and shell_volume().
[31fc4ad]306And** *scale* **and** *background* **parameters are implicit to all models,
307so they do not need to be included in the parameter table.**
[990d8df]308
309- **"name"** is the name of the parameter shown on the FitPage.
310
[3048ec6]311  - the name must be a valid variable name, starting with a letter and
312    containing only letters, numbers and underscore.
313
[990d8df]314  - parameter names should follow the mathematical convention; e.g.,
315    *radius_core* not *core_radius*, or *sld_solvent* not *solvent_sld*.
316
317  - model parameter names should be consistent between different models,
318    so *sld_solvent*, for example, should have exactly the same name
319    in every model.
320
321  - to see all the parameter names currently in use, type the following in the
322    python shell/editor under the Tools menu::
323
324       import sasmodels.list_pars
325       sasmodels.list_pars.list_pars()
326
327    *re-use* as many as possible!!!
328
329  - use "name[n]" for multiplicity parameters, where *n* is the name of
330    the parameter defining the number of shells/layers/segments, etc.
331
332- **"units"** are displayed along with the parameter name
333
334  - every parameter should have units; use "None" if there are no units.
335
336  - **sld's should be given in units of 1e-6/Ang^2, and not simply
337    1/Ang^2 to be consistent with the builtin models.  Adjust your formulas
338    appropriately.**
339
340  - fancy units markup is available for some units, including::
341
342        Ang, 1/Ang, 1/Ang^2, 1e-6/Ang^2, degrees, 1/cm, Ang/cm, g/cm^3, mg/m^2
343
344  - the list of units is defined in the variable *RST_UNITS* within
345    `sasmodels/generate.py <https://github.com/SasView/sasmodels/tree/master/sasmodels/generate.py>`_
346
347    - new units can be added using the macros defined in *doc/rst_prolog*
348      in the sasmodels source.
349    - units should be properly formatted using sub-/super-scripts
350      and using negative exponents instead of the / operator, though
351      the unit name should use the / operator for consistency.
352    - please post a message to the SasView developers mailing list with your changes.
353
354- **default** is the initial value for the parameter.
355
356  - **the parameter default values are used to auto-generate a plot of
357    the model function in the documentation.**
358
359- **[min, max]** are the lower and upper limits on the parameter.
360
361  - lower and upper limits can be any number, or *-inf* or *inf*.
362
363  - the limits will show up as the default limits for the fit making it easy,
364    for example, to force the radius to always be greater than zero.
365
366  - these are hard limits defining the valid range of parameter values;
367    polydisperity distributions will be truncated at the limits.
368
369- **"type"** can be one of: "", "sld", "volume", or "orientation".
370
371  - "sld" parameters can have magnetic moments when fitting magnetic models;
372    depending on the spin polarization of the beam and the $q$ value being
373    examined, the effective sld for that material will be used to compute the
374    scattered intensity.
375
[31fc4ad]376  - "volume" parameters are passed to Fq(), Iq(), Iqac(), Iqabc(), form_volume()
377    and shell_volume(), and have polydispersity loops generated automatically.
[990d8df]378
[108e70e]379  - "orientation" parameters are not passed, but instead are combined with
380    orientation dispersity to translate *qx* and *qy* to *qa*, *qb* and *qc*.
381    These parameters should appear at the end of the table with the specific
382    names *theta*, *phi* and for asymmetric shapes *psi*, in that order.
[990d8df]383
[9844c3a]384Some models will have integer parameters, such as number of pearls in the
385pearl necklace model, or number of shells in the multi-layer vesicle model.
386The optimizers in BUMPS treat all parameters as floating point numbers which
387can take arbitrary values, even for integer parameters, so your model should
388round the incoming parameter value to the nearest integer inside your model
[e5cb3df]389you should round to the nearest integer.  In C code, you can do this using:
390
391.. code-block:: c
[9844c3a]392
393    static double
394    Iq(double q, ..., double fp_n, ...)
395    {
396        int n = (int)(fp_n + 0.5);
397        ...
398    }
399
400in python::
401
402    def Iq(q, ..., n, ...):
403        n = int(n+0.5)
404        ...
405
[3048ec6]406Derivative based optimizers such as Levenberg-Marquardt will not work
[9844c3a]407for integer parameters since the partial derivative is always zero, but
408the remaining optimizers (DREAM, differential evolution, Nelder-Mead simplex)
409will still function.
410
[990d8df]411Model Computation
412.................
413
414Models can be defined as pure python models, or they can be a mixture of
415python and C models.  C models are run on the GPU if it is available,
416otherwise they are compiled and run on the CPU.
417
418Models are defined by the scattering kernel, which takes a set of parameter
419values defining the shape, orientation and material, and returns the
420expected scattering. Polydispersity and angular dispersion are defined
421by the computational infrastructure.  Any parameters defined as "volume"
422parameters are polydisperse, with polydispersity defined in proportion
423to their value.  "orientation" parameters use angular dispersion defined
424in degrees, and are not relative to the current angle.
425
426Based on a weighting function $G(x)$ and a number of points $n$, the
427computed value is
428
429.. math::
430
431     \hat I(q)
432     = \frac{\int G(x) I(q, x)\,dx}{\int G(x) V(x)\,dx}
433     \approx \frac{\sum_{i=1}^n G(x_i) I(q,x_i)}{\sum_{i=1}^n G(x_i) V(x_i)}
434
[3048ec6]435That is, the individual models do not need to include polydispersity
[990d8df]436calculations, but instead rely on numerical integration to compute the
[108e70e]437appropriately smeared pattern.
[990d8df]438
[2015f02]439Each .py file also contains a function::
440
441        def random():
442        ...
[31fc4ad]443
444This function provides a model-specific random parameter set which shows model
445features in the USANS to SANS range.  For example, core-shell sphere sets the
446outer radius of the sphere logarithmically in `[20, 20,000]`, which sets the Q
447value for the transition from flat to falling.  It then uses a beta distribution
448to set the percentage of the shape which is shell, giving a preference for very
449thin or very thick shells (but never 0% or 100%).  Using `-sets=10` in sascomp
450should show a reasonable variety of curves over the default sascomp q range.
451The parameter set is returned as a dictionary of `{parameter: value, ...}`.
452Any model parameters not included in the dictionary will default according to
[2015f02]453the code in the `_randomize_one()` function from sasmodels/compare.py.
454
[990d8df]455Python Models
456.............
457
[e15a822]458.. note::
459
460   Pure python models do not yet support direct computation of $<F(Q)^2>$ or
461   $<F(Q)>^2$. Neither do they support orientational distributions or magnetism
462   (use C models if these are required).
463
[990d8df]464For pure python models, define the *Iq* function::
465
466      import numpy as np
467      from numpy import cos, sin, ...
468
469      def Iq(q, par1, par2, ...):
470          return I(q, par1, par2, ...)
471      Iq.vectorized = True
472
473The parameters *par1, par2, ...* are the list of non-orientation parameters
474to the model in the order that they appear in the parameter table.
[3048ec6]475**Note that the auto-generated model file uses** *x* **rather than** *q*.
[990d8df]476
477The *.py* file should import trigonometric and exponential functions from
478numpy rather than from math.  This lets us evaluate the model for the whole
479range of $q$ values at once rather than looping over each $q$ separately in
480python.  With $q$ as a vector, you cannot use if statements, but must instead
481do tricks like
482
483::
484
485     a = x*q*(q>0) + y*q*(q<=0)
486
487or
488
489::
490
491     a = np.empty_like(q)
492     index = q>0
493     a[index] = x*q[index]
494     a[~index] = y*q[~index]
495
496which sets $a$ to $q \cdot x$ if $q$ is positive or $q \cdot y$ if $q$
497is zero or negative. If you have not converted your function to use $q$
498vectors, you can set the following and it will only receive one $q$
499value at a time::
500
501    Iq.vectorized = False
502
503Return np.NaN if the parameters are not valid (e.g., cap_radius < radius in
504barbell).  If I(q; pars) is NaN for any $q$, then those parameters will be
505ignored, and not included in the calculation of the weighted polydispersity.
506
507Models should define *form_volume(par1, par2, ...)* where the parameter
508list includes the *volume* parameters in order.  This is used for a weighted
[e5cb3df]509volume normalization so that scattering is on an absolute scale.  For
510solid shapes, the *I(q)* function should use *form_volume* squared
511as its scale factor.  If *form_volume* is not defined, then the default
512*form_volume = 1.0* will be used.
[990d8df]513
[31fc4ad]514Hollow shapes, where the volume fraction of particle corresponds to the
515material in the shell rather than the volume enclosed by the shape, must
516also define a *shell_volume(par1, par2, ...)* function.  The parameters
[e5cb3df]517are the same as for *form_volume*.  Here the *I(q)* function should use
518*shell_volume* squared instead of *form_volume* squared so that the scale
519parameter corresponds to the volume fraction of material in the sample.
520The structure factor calculation needs the volume fraction of the filled
521shapes for its calculation, so the volume fraction parameter in the model
522is automatically scaled by *form_volume/shell_volume* prior to calling the
523structure factor.
[31fc4ad]524
[990d8df]525Embedded C Models
526.................
527
528Like pure python models, inline C models need to define an *Iq* function::
529
530    Iq = """
531        return I(q, par1, par2, ...);
532    """
533
[e5cb3df]534This expands into the equivalent C code:
535
536.. code-block:: c
[990d8df]537
538    double Iq(double q, double par1, double par2, ...);
539    double Iq(double q, double par1, double par2, ...)
540    {
541        return I(q, par1, par2, ...);
542    }
543
544*form_volume* defines the volume of the shape. As in python models, it
545includes only the volume parameters.
546
[e5cb3df]547*shell_volume* defines the volume of the shell for hollow shapes. As in
[31fc4ad]548python models, it includes only the volume parameters.
549
[990d8df]550**source=['fn.c', ...]** includes the listed C source files in the
[108e70e]551program before *Iq* and *form_volume* are defined. This allows you to
[ef85a09]552extend the library of C functions available to your model.
553
554*c_code* includes arbitrary C code into your kernel, which can be
555handy for defining helper functions for *Iq* and *form_volume*. Note that
[108e70e]556you can put the full function definition for *Iq* and *form_volume*
[ef85a09]557(include function declaration) into *c_code* as well, or put them into an
558external C file and add that file to the list of sources.
[990d8df]559
560Models are defined using double precision declarations for the
561parameters and return values.  When a model is run using single
562precision or long double precision, each variable is converted
563to the target type, depending on the precision requested.
564
565**Floating point constants must include the decimal point.**  This allows us
566to convert values such as 1.0 (double precision) to 1.0f (single precision)
567so that expressions that use these values are not promoted to double precision
568expressions.  Some graphics card drivers are confused when functions
569that expect floating point values are passed integers, such as 4*atan(1); it
570is safest to not use integers in floating point expressions.  Even better,
571use the builtin constant M_PI rather than 4*atan(1); it is faster and smaller!
572
573The C model operates on a single $q$ value at a time.  The code will be
574run in parallel across different $q$ values, either on the graphics card
575or the processor.
576
577Rather than returning NAN from Iq, you must define the *INVALID(v)*.  The
578*v* parameter lets you access all the parameters in the model using
[e5cb3df]579*v.par1*, *v.par2*, etc. For example:
580
581.. code-block:: c
[990d8df]582
583    #define INVALID(v) (v.bell_radius < v.radius)
584
[ef85a09]585The INVALID define can go into *Iq*, or *c_code*, or an external C file
586listed in *source*.
587
[31fc4ad]588Structure Factors
589.................
590
591Structure factor calculations may need the underlying $<F(q)>$ and $<F^2(q)>$
592rather than $I(q)$.  This is used to compute $\beta = <F(q)>^2/<F^2(q)>$ in
593the decoupling approximation to the structure factor.
594
595Instead of defining the *Iq* function, models can define *Fq* as
[e5cb3df]596something like:
597
598.. code-block:: c
[31fc4ad]599
600    double Fq(double q, double *F1, double *F2, double par1, double par2, ...);
601    double Fq(double q, double *F1, double *F2, double par1, double par2, ...)
602    {
603        // Polar integration loop over all orientations.
604        ...
605        *F1 = 1e-2 * total_F1 * contrast * volume;
606        *F2 = 1e-4 * total_F2 * square(contrast * volume);
607        return I(q, par1, par2, ...);
608    }
609
610If the volume fraction scale factor is built into the model (as occurs for
611the vesicle model, for example), then scale *F1* by $\surd V_f$ so that
612$\beta$ is computed correctly.
613
614Structure factor calculations are not yet supported for oriented shapes.
615
616Note: only available as a separate C file listed in *source*, or within
617a *c_code* block within the python model definition file.
618
[108e70e]619Oriented Shapes
620...............
621
622If the scattering is dependent on the orientation of the shape, then you
623will need to include *orientation* parameters *theta*, *phi* and *psi*
[7e6bc45e]624at the end of the parameter table.  As described in the section
625:ref:`orientation`, the individual $(q_x, q_y)$ points on the detector will
626be rotated into $(q_a, q_b, q_c)$ points relative to the sample in its
627canonical orientation with $a$-$b$-$c$ aligned with $x$-$y$-$z$ in the
628laboratory frame and beam travelling along $-z$.
629
[e5cb3df]630The oriented C model (oriented pure Python models are not supported)
[2fe39d1]631is called using *Iqabc(qa, qb, qc, par1, par2, ...)* where
[108e70e]632*par1*, etc. are the parameters to the model.  If the shape is rotationally
633symmetric about *c* then *psi* is not needed, and the model is called
634as *Iqac(qab, qc, par1, par2, ...)*.  In either case, the orientation
635parameters are not included in the function call.
636
637For 1D oriented shapes, an integral over all angles is usually needed for
[b85227d]638the *Iq* function. Given symmetry and the substitution $u = \cos(\alpha)$,
[108e70e]639$du = -\sin(\alpha)\,d\alpha$ this becomes
640
641.. math::
642
[b85227d]643    I(q) &= \frac{1}{4\pi} \int_{-\pi/2}^{pi/2} \int_{-pi}^{pi}
644            F(q_a, q_b, q_c)^2 \sin(\alpha)\,d\beta\,d\alpha \\
645        &= \frac{8}{4\pi} \int_{0}^{pi/2} \int_{0}^{\pi/2}
646            F^2 \sin(\alpha)\,d\beta\,d\alpha \\
647        &= \frac{8}{4\pi} \int_1^0 \int_{0}^{\pi/2} - F^2 \,d\beta\,du \\
648        &= \frac{8}{4\pi} \int_0^1 \int_{0}^{\pi/2} F^2 \,d\beta\,du
649
650for
651
652.. math::
653
654    q_a &= q \sin(\alpha)\sin(\beta) = q \sqrt{1-u^2} \sin(\beta) \\
655    q_b &= q \sin(\alpha)\cos(\beta) = q \sqrt{1-u^2} \cos(\beta) \\
656    q_c &= q \cos(\alpha) = q u
[108e70e]657
658Using the $z, w$ values for Gauss-Legendre integration in "lib/gauss76.c", the
[e5cb3df]659numerical integration is then:
660
661.. code-block:: c
[108e70e]662
663    double outer_sum = 0.0;
664    for (int i = 0; i < GAUSS_N; i++) {
665        const double cos_alpha = 0.5*GAUSS_Z[i] + 0.5;
666        const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha);
667        const double qc = cos_alpha * q;
668        double inner_sum = 0.0;
669        for (int j = 0; j < GAUSS_N; j++) {
670            const double beta = M_PI_4 * GAUSS_Z[j] + M_PI_4;
671            double sin_beta, cos_beta;
672            SINCOS(beta, sin_beta, cos_beta);
673            const double qa = sin_alpha * sin_beta * q;
[b85227d]674            const double qb = sin_alpha * cos_beta * q;
675            const double form = Fq(qa, qb, qc, ...);
676            inner_sum += GAUSS_W[j] * form * form;
[108e70e]677        }
678        outer_sum += GAUSS_W[i] * inner_sum;
679    }
680    outer_sum *= 0.25; // = 8/(4 pi) * outer_sum * (pi/2) / 4
681
682The *z* values for the Gauss-Legendre integration extends from -1 to 1, so
683the double sum of *w[i]w[j]* explains the factor of 4.  Correcting for the
684average *dz[i]dz[j]* gives $(1-0) \cdot (\pi/2-0) = \pi/2$.  The $8/(4 \pi)$
685factor comes from the integral over the quadrant.  With less symmetry (eg.,
686in the bcc and fcc paracrystal models), then an integral over the entire
687sphere may be necessary.
688
689For simpler models which are rotationally symmetric a single integral
690suffices:
691
692.. math::
693
[b85227d]694    I(q) &= \frac{1}{\pi}\int_{-\pi/2}^{\pi/2}
695            F(q_{ab}, q_c)^2 \sin(\alpha)\,d\alpha/\pi \\
696        &= \frac{2}{\pi} \int_0^1 F^2\,du
697
698for
699
700.. math::
701
702    q_{ab} &= q \sin(\alpha) = q \sqrt{1 - u^2} \\
703    q_c &= q \cos(\alpha) = q u
704
[108e70e]705
706with integration loop::
707
708    double sum = 0.0;
709    for (int i = 0; i < GAUSS_N; i++) {
710        const double cos_alpha = 0.5*GAUSS_Z[i] + 0.5;
711        const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha);
712        const double qab = sin_alpha * q;
[b85227d]713        const double qc = cos_alpha * q;
714        const double form = Fq(qab, qc, ...);
715        sum += GAUSS_W[j] * form * form;
[108e70e]716    }
717    sum *= 0.5; // = 2/pi * sum * (pi/2) / 2
718
719Magnetism
720.........
721
722Magnetism is supported automatically for all shapes by modifying the
723effective SLD of particle according to the Halpern-Johnson vector
[c654160]724describing the interaction between neutron spin and magnetic field.  All
[108e70e]725parameters marked as type *sld* in the parameter table are treated as
726possibly magnetic particles with magnitude *M0* and direction
727*mtheta* and *mphi*.  Polarization parameters are also provided
728automatically for magnetic models to set the spin state of the measurement.
729
730For more complicated systems where magnetism is not uniform throughout
731the individual particles, you will need to write your own models.
732You should not mark the nuclear sld as type *sld*, but instead leave
733them unmarked and provide your own magnetism and polarization parameters.
734For 2D measurements you will need $(q_x, q_y)$ values for the measurement
735to compute the proper magnetism and orientation, which you can implement
736using *Iqxy(qx, qy, par1, par2, ...)*.
737
[2fe39d1]738**Note: Magnetism is not supported in pure Python models.**
739
[990d8df]740Special Functions
741.................
742
743The C code follows the C99 standard, with the usual math functions,
744as defined in
745`OpenCL <https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/mathFunctions.html>`_.
746This includes the following:
747
748    M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E:
749        $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$
[d0dc9a3]750    exp, log, pow(x,y), expm1, log1p, sqrt, cbrt:
751        Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ln 1 + x$,
752        $\sqrt{x}$, $\sqrt[3]{x}$. The functions expm1(x) and log1p(x)
753        are accurate across all $x$, including $x$ very close to zero.
[990d8df]754    sin, cos, tan, asin, acos, atan:
755        Trigonometry functions and inverses, operating on radians.
756    sinh, cosh, tanh, asinh, acosh, atanh:
757        Hyperbolic trigonometry functions.
758    atan2(y,x):
759        Angle from the $x$\ -axis to the point $(x,y)$, which is equal to
760        $\tan^{-1}(y/x)$ corrected for quadrant.  That is, if $x$ and $y$ are
761        both negative, then atan2(y,x) returns a value in quadrant III where
762        atan(y/x) would return a value in quadrant I. Similarly for
763        quadrants II and IV when $x$ and $y$ have opposite sign.
[d0dc9a3]764    fabs(x), fmin(x,y), fmax(x,y), trunc, rint:
[990d8df]765        Floating point functions.  rint(x) returns the nearest integer.
766    NAN:
767        NaN, Not a Number, $0/0$.  Use isnan(x) to test for NaN.  Note that
768        you cannot use :code:`x == NAN` to test for NaN values since that
[d0dc9a3]769        will always return false.  NAN does not equal NAN!  The alternative,
770        :code:`x != x` may fail if the compiler optimizes the test away.
[990d8df]771    INFINITY:
772        $\infty, 1/0$.  Use isinf(x) to test for infinity, or isfinite(x)
773        to test for finite and not NaN.
774    erf, erfc, tgamma, lgamma:  **do not use**
775        Special functions that should be part of the standard, but are missing
[fba9ca0]776        or inaccurate on some platforms. Use sas_erf, sas_erfc, sas_gamma
777        and sas_lgamma instead (see below).
[990d8df]778
779Some non-standard constants and functions are also provided:
780
781    M_PI_180, M_4PI_3:
782        $\frac{\pi}{180}$, $\frac{4\pi}{3}$
783    SINCOS(x, s, c):
784        Macro which sets s=sin(x) and c=cos(x). The variables *c* and *s*
785        must be declared first.
786    square(x):
787        $x^2$
788    cube(x):
789        $x^3$
790    sas_sinx_x(x):
791        $\sin(x)/x$, with limit $\sin(0)/0 = 1$.
792    powr(x, y):
793        $x^y$ for $x \ge 0$; this is faster than general $x^y$ on some GPUs.
794    pown(x, n):
795        $x^n$ for $n$ integer; this is faster than general $x^n$ on some GPUs.
796    FLOAT_SIZE:
797        The number of bytes in a floating point value.  Even though all
798        variables are declared double, they may be converted to single
799        precision float before running. If your algorithm depends on
800        precision (which is not uncommon for numerical algorithms), use
801        the following::
802
803            #if FLOAT_SIZE>4
804            ... code for double precision ...
805            #else
806            ... code for single precision ...
807            #endif
808    SAS_DOUBLE:
809        A replacement for :code:`double` so that the declared variable will
810        stay double precision; this should generally not be used since some
811        graphics cards do not support double precision.  There is no provision
812        for forcing a constant to stay double precision.
813
814The following special functions and scattering calculations are defined in
815`sasmodels/models/lib <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib>`_.
816These functions have been tuned to be fast and numerically stable down
817to $q=0$ even in single precision.  In some cases they work around bugs
818which appear on some platforms but not others, so use them where needed.
819Add the files listed in :code:`source = ["lib/file.c", ...]` to your *model.py*
820file in the order given, otherwise these functions will not be available.
821
822    polevl(x, c, n):
823        Polynomial evaluation $p(x) = \sum_{i=0}^n c_i x^i$ using Horner's
824        method so it is faster and more accurate.
825
826        $c = \{c_n, c_{n-1}, \ldots, c_0 \}$ is the table of coefficients,
827        sorted from highest to lowest.
828
829        :code:`source = ["lib/polevl.c", ...]` (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/polevl.c>`_)
830
831    p1evl(x, c, n):
832        Evaluation of normalized polynomial $p(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$
833        using Horner's method so it is faster and more accurate.
834
835        $c = \{c_{n-1}, c_{n-2} \ldots, c_0 \}$ is the table of coefficients,
836        sorted from highest to lowest.
837
838        :code:`source = ["lib/polevl.c", ...]`
[870a2f4]839        (`polevl.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/polevl.c>`_)
[990d8df]840
841    sas_gamma(x):
[30b60d2]842        Gamma function sas_gamma\ $(x) = \Gamma(x)$.
[990d8df]843
[fba9ca0]844        The standard math function, tgamma(x), is unstable for $x < 1$
[990d8df]845        on some platforms.
846
[870a2f4]847        :code:`source = ["lib/sas_gamma.c", ...]`
848        (`sas_gamma.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gamma.c>`_)
[990d8df]849
[fba9ca0]850    sas_gammaln(x):
851        log gamma function sas_gammaln\ $(x) = \log \Gamma(|x|)$.
852
853        The standard math function, lgamma(x), is incorrect for single
854        precision on some platforms.
855
856        :code:`source = ["lib/sas_gammainc.c", ...]`
857        (`sas_gammainc.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gammainc.c>`_)
858
859    sas_gammainc(a, x), sas_gammaincc(a, x):
860        Incomplete gamma function
861        sas_gammainc\ $(a, x) = \int_0^x t^{a-1}e^{-t}\,dt / \Gamma(a)$
862        and complementary incomplete gamma function
863        sas_gammaincc\ $(a, x) = \int_x^\infty t^{a-1}e^{-t}\,dt / \Gamma(a)$
864
865        :code:`source = ["lib/sas_gammainc.c", ...]`
866        (`sas_gammainc.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gammainc.c>`_)
867
[990d8df]868    sas_erf(x), sas_erfc(x):
869        Error function
[30b60d2]870        sas_erf\ $(x) = \frac{2}{\sqrt\pi}\int_0^x e^{-t^2}\,dt$
[990d8df]871        and complementary error function
[30b60d2]872        sas_erfc\ $(x) = \frac{2}{\sqrt\pi}\int_x^{\infty} e^{-t^2}\,dt$.
[990d8df]873
874        The standard math functions erf(x) and erfc(x) are slower and broken
875        on some platforms.
876
877        :code:`source = ["lib/polevl.c", "lib/sas_erf.c", ...]`
[870a2f4]878        (`sas_erf.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_erf.c>`_)
[990d8df]879
880    sas_J0(x):
[30b60d2]881        Bessel function of the first kind sas_J0\ $(x)=J_0(x)$ where
[990d8df]882        $J_0(x) = \frac{1}{\pi}\int_0^\pi \cos(x\sin(\tau))\,d\tau$.
883
884        The standard math function j0(x) is not available on all platforms.
885
886        :code:`source = ["lib/polevl.c", "lib/sas_J0.c", ...]`
[870a2f4]887        (`sas_J0.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J0.c>`_)
[990d8df]888
889    sas_J1(x):
[30b60d2]890        Bessel function of the first kind  sas_J1\ $(x)=J_1(x)$ where
[990d8df]891        $J_1(x) = \frac{1}{\pi}\int_0^\pi \cos(\tau - x\sin(\tau))\,d\tau$.
892
893        The standard math function j1(x) is not available on all platforms.
894
895        :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]`
[870a2f4]896        (`sas_J1.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c>`_)
[990d8df]897
898    sas_JN(n, x):
[30b60d2]899        Bessel function of the first kind and integer order $n$,
900        sas_JN\ $(n, x) =J_n(x)$ where
[990d8df]901        $J_n(x) = \frac{1}{\pi}\int_0^\pi \cos(n\tau - x\sin(\tau))\,d\tau$.
[30b60d2]902        If $n$ = 0 or 1, it uses sas_J0($x$) or sas_J1($x$), respectively.
[990d8df]903
[57c609b]904        Warning: JN(n,x) can be very inaccurate (0.1%) for x not in [0.1, 100].
905
[990d8df]906        The standard math function jn(n, x) is not available on all platforms.
907
908        :code:`source = ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c", ...]`
[870a2f4]909        (`sas_JN.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_JN.c>`_)
[990d8df]910
911    sas_Si(x):
[30b60d2]912        Sine integral Si\ $(x) = \int_0^x \tfrac{\sin t}{t}\,dt$.
[990d8df]913
[57c609b]914        Warning: Si(x) can be very inaccurate (0.1%) for x in [0.1, 100].
915
[990d8df]916        This function uses Taylor series for small and large arguments:
917
[57c609b]918        For large arguments use the following Taylor series,
[990d8df]919
920        .. math::
921
922             \text{Si}(x) \sim \frac{\pi}{2}
923             - \frac{\cos(x)}{x}\left(1 - \frac{2!}{x^2} + \frac{4!}{x^4} - \frac{6!}{x^6} \right)
924             - \frac{\sin(x)}{x}\left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right)
925
[94bfa42]926        For small arguments,
[990d8df]927
928        .. math::
929
930           \text{Si}(x) \sim x
931           - \frac{x^3}{3\times 3!} + \frac{x^5}{5 \times 5!} - \frac{x^7}{7 \times 7!}
932           + \frac{x^9}{9\times 9!} - \frac{x^{11}}{11\times 11!}
933
934        :code:`source = ["lib/Si.c", ...]`
[f796469]935        (`Si.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_Si.c>`_)
[990d8df]936
937    sas_3j1x_x(x):
938        Spherical Bessel form
[30b60d2]939        sph_j1c\ $(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$,
[990d8df]940        with a limiting value of 1 at $x=0$, where $j_1(x)$ is the spherical
941        Bessel function of the first kind and first order.
942
943        This function uses a Taylor series for small $x$ for numerical accuracy.
944
945        :code:`source = ["lib/sas_3j1x_x.c", ...]`
[870a2f4]946        (`sas_3j1x_x.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_3j1x_x.c>`_)
[990d8df]947
948
949    sas_2J1x_x(x):
[30b60d2]950        Bessel form sas_J1c\ $(x) = 2 J_1(x)/x$, with a limiting value
[990d8df]951        of 1 at $x=0$, where $J_1(x)$ is the Bessel function of first kind
952        and first order.
953
954        :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]`
[870a2f4]955        (`sas_J1.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c>`_)
[990d8df]956
957
958    Gauss76Z[i], Gauss76Wt[i]:
959        Points $z_i$ and weights $w_i$ for 76-point Gaussian quadrature, respectively,
960        computing $\int_{-1}^1 f(z)\,dz \approx \sum_{i=1}^{76} w_i\,f(z_i)$.
961
962        Similar arrays are available in :code:`gauss20.c` for 20-point
963        quadrature and in :code:`gauss150.c` for 150-point quadrature.
[d0dc9a3]964        The macros :code:`GAUSS_N`, :code:`GAUSS_Z` and :code:`GAUSS_W` are
965        defined so that you can change the order of the integration by
966        selecting an different source without touching the C code.
[990d8df]967
968        :code:`source = ["lib/gauss76.c", ...]`
[870a2f4]969        (`gauss76.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/gauss76.c>`_)
[990d8df]970
971
972
973Problems with C models
974......................
975
976The graphics processor (GPU) in your computer is a specialized computer tuned
977for certain kinds of problems.  This leads to strange restrictions that you
978need to be aware of.  Your code may work fine on some platforms or for some
979models, but then return bad values on other platforms.  Some examples of
980particular problems:
981
982  **(1) Code is too complex, or uses too much memory.** GPU devices only
983  have a limited amount of memory available for each processor. If you run
984  programs which take too much memory, then rather than running multiple
985  values in parallel as it usually does, the GPU may only run a single
986  version of the code at a time, making it slower than running on the CPU.
987  It may fail to run on some platforms, or worse, cause the screen to go
988  blank or the system to reboot.
989
990  **(2) Code takes too long.** Because GPU devices are used for the computer
991  display, the OpenCL drivers are very careful about the amount of time they
992  will allow any code to run. For example, on OS X, the model will stop
993  running after 5 seconds regardless of whether the computation is complete.
994  You may end up with only some of your 2D array defined, with the rest
995  containing random data. Or it may cause the screen to go blank or the
996  system to reboot.
997
998  **(3) Memory is not aligned**. The GPU hardware is specialized to operate
999  on multiple values simultaneously. To keep the GPU simple the values in
1000  memory must be aligned with the different GPU compute engines. Not
1001  following these rules can lead to unexpected values being loaded into
1002  memory, and wrong answers computed. The conclusion from a very long and
1003  strange debugging session was that any arrays that you declare in your
[e5cb3df]1004  model should be a multiple of four. For example:
1005
1006  .. code-block:: c
[990d8df]1007
1008      double Iq(q, p1, p2, ...)
1009      {
1010          double vector[8];  // Only going to use seven slots, but declare 8
1011          ...
1012      }
1013
1014The first step when your model is behaving strangely is to set
1015**single=False**. This automatically restricts the model to only run on the
1016CPU, or on high-end GPU cards. There can still be problems even on high-end
1017cards, so you can force the model off the GPU by setting **opencl=False**.
1018This runs the model as a normal C program without any GPU restrictions so
1019you know that strange results are probably from your code rather than the
1020environment. Once the code is debugged, you can compare your output to the
1021output on the GPU.
1022
1023Although it can be difficult to get your model to work on the GPU, the reward
1024can be a model that runs 1000x faster on a good card.  Even your laptop may
1025show a 50x improvement or more over the equivalent pure python model.
1026
1027
1028.. _Form_Factors:
1029
1030Form Factors
1031............
1032
1033Away from the dilute limit you can estimate scattering including
1034particle-particle interactions using $I(q) = P(q)*S(q)$ where $P(q)$
1035is the form factor and $S(q)$ is the structure factor.  The simplest
1036structure factor is the *hardsphere* interaction, which
1037uses the effective radius of the form factor as an input to the structure
[e5cb3df]1038factor model.  The effective radius is the weighted average over all
1039values of the shape in polydisperse systems.
1040
1041There can be many notions of effective radius, depending on the shape.  For
1042a sphere it is clearly just the radius, but for an ellipsoid of revolution
1043we provide average curvature, equivalent sphere radius, minimum radius and
1044maximum radius.  These options are listed as *radius_effective_modes* in
1045the python model defintion, and must be computed by the *radius_effective*
1046function which takes the *radius_effective_mode* parameter as an integer,
1047along with the various model parameters.  Unlike normal C/Python arrays,
1048the first mode is 1, the second is 2, etc.  Mode 0 indicates that the
1049effective radius from the shape is to be ignored in favour of the the
1050effective radius parameter in the structure factor model.
1051
1052
1053Consider the core-shell sphere, which defines the following effective radius
1054modes in the python model::
1055
1056    radius_effective_modes = [
1057        "outer radius",
1058        "core radius",
1059    ]
[990d8df]1060
[e5cb3df]1061and the following function in the C-file for the model:
[990d8df]1062
[e5cb3df]1063.. code-block:: c
[990d8df]1064
[e5cb3df]1065    static double
1066    radius_effective(int mode, double radius, double thickness)
1067    {
1068        switch (mode) {
1069            case 0: return radius + thickness;
1070            case 1: return radius;
1071            default: return 0.;
1072        }
1073    }
1074
1075    static double
1076    form_volume(double radius, double thickness)
1077    {
1078        return M_4PI_3 * cube(radius + thickness);
1079    }
[990d8df]1080
[e5cb3df]1081Given polydispersity over *(r1, r2, ..., rm)* in radius and *(t1, t2, ..., tn)*
1082in thickness, *radius_effective* is called over a mesh grid covering all
1083possible combinations of radius and thickness, with a single *(ri, tj)* pair
1084in each call. The weights each of these results according to the
1085polydispersity distributions and calls the structure factor with the average
1086effective radius.  Similarly, for *form_volume*.
[990d8df]1087
[e5cb3df]1088Hollow models have an additional volume ratio which is needed to scale the
1089structure factor.  The structure factor uses the volume fraction of the filled
1090particles as part of its density estimate, but the scale factor for the
1091scattering intensity (as non-solvent volume fraction / volume) is determined
1092by the shell volume only.  Therefore the *shell_volume* function is
1093needed to compute the form:shell volume ratio, which then scales the
1094*volfraction* parameter prior to calling the structure factor calculator.
1095In the case of a hollow sphere, this would be:
1096
1097.. code-block:: c
1098
1099    static double
1100    shell_volume(double radius, double thickness)
1101    {
1102        double whole = M_4PI_3 * cube(radius + thickness);
1103        double core = M_4PI_3 * cube(radius);
1104        return whole - core;
1105    }
[990d8df]1106
[e5cb3df]1107If *shell_volume* is not present, then *form_volume* and *shell_volume* are
1108assumed to be equal, and the shape is considered solid.
[990d8df]1109
1110Unit Tests
1111..........
1112
1113THESE ARE VERY IMPORTANT. Include at least one test for each model and
1114PLEASE make sure that the answer value is correct (i.e. not a random number).
1115
1116::
1117
1118    tests = [
1119        [{}, 0.2, 0.726362],
1120        [{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1.,
1121          "radius": 120., "radius_pd": 0.2, "radius_pd_n":45},
1122         0.2, 0.228843],
[304c775]1123        [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45},
1124         0.1, None, None, 120., None, 1.],  # q, F, F^2, R_eff, V, form:shell
[81751c2]1125        [{"@S": "hardsphere"}, 0.1, None],
[990d8df]1126    ]
1127
1128
[304c775]1129**tests=[[{parameters}, q, Iq], ...]** is a list of lists.
[990d8df]1130Each list is one test and contains, in order:
1131
1132- a dictionary of parameter values. This can be *{}* using the default
1133  parameters, or filled with some parameters that will be different from the
1134  default, such as *{"radius":10.0, "sld":4}*. Unlisted parameters will
1135  be given the default values.
1136- the input $q$ value or tuple of $(q_x, q_y)$ values.
1137- the output $I(q)$ or $I(q_x,q_y)$ expected of the model for the parameters
1138  and input value given.
1139- input and output values can themselves be lists if you have several
1140  $q$ values to test for the same model parameters.
[304c775]1141- for testing effective radius, volume and form:shell volume ratio, use the
1142  extended form of the tests results, with *None, None, R_eff, V, V_r*
1143  instead of *Iq*.  This calls the kernel *Fq* function instead of *Iq*.
1144- for testing F and F^2 (used for beta approximation) do the same as the
1145  effective radius test, but include values for the first two elements,
1146  $<F(q)>$ and $<F^2(q)>$.
[81751c2]1147- for testing interaction between form factor and structure factor, specify
1148  the structure factor name in the parameters as *{"@S": "name", ...}* with
1149  the remaining list of parameters defined by the *P@S* product model.
[990d8df]1150
1151.. _Test_Your_New_Model:
1152
1153Test Your New Model
1154^^^^^^^^^^^^^^^^^^^
1155
1156Minimal Testing
1157...............
1158
1159From SasView either open the Python shell (*Tools* > *Python Shell/Editor*)
1160or the plugin editor (*Fitting* > *Plugin Model Operations* > *Advanced
1161Plugin Editor*), load your model, and then select *Run > Check Model* from
1162the menu bar. An *Info* box will appear with the results of the compilation
1163and a check that the model runs.
1164
1165Recommended Testing
1166...................
1167
[db1d9d5]1168**NB: For now, this more detailed testing is only possible if you have a
1169SasView build environment available!**
1170
[990d8df]1171If the model compiles and runs, you can next run the unit tests that
1172you have added using the **test =** values.
1173
1174From SasView, switch to the *Shell* tab and type the following::
1175
1176    from sasmodels.model_test import run_one
1177    run_one("~/.sasview/plugin_models/model.py")
1178
1179This should print::
1180
1181    test_model_python (sasmodels.model_test.ModelTestCase) ... ok
1182
1183To check whether single precision is good enough, type the following::
1184
1185    from sasmodels.compare import main as compare
1186    compare("~/.sasview/plugin_models/model.py")
1187
1188This will pop up a plot showing the difference between single precision
1189and double precision on a range of $q$ values.
1190
1191::
1192
1193  demo = dict(scale=1, background=0,
1194              sld=6, sld_solvent=1,
1195              radius=120,
1196              radius_pd=.2, radius_pd_n=45)
1197
1198**demo={'par': value, ...}** in the model file sets the default values for
1199the comparison. You can include polydispersity parameters such as
1200*radius_pd=0.2, radius_pd_n=45* which would otherwise be zero.
1201
1202These commands can also be run directly in the python interpreter:
1203
1204    $ python -m sasmodels.model_test -v ~/.sasview/plugin_models/model.py
1205    $ python -m sasmodels.compare ~/.sasview/plugin_models/model.py
1206
1207The options to compare are quite extensive; type the following for help::
1208
1209    compare()
1210
1211Options will need to be passed as separate strings.
1212For example to run your model with a random set of parameters::
1213
1214    compare("-random", "-pars", "~/.sasview/plugin_models/model.py")
1215
1216For the random models,
1217
1218- *sld* will be in the range (-0.5,10.5),
1219- angles (*theta, phi, psi*) will be in the range (-180,180),
1220- angular dispersion will be in the range (0,45),
1221- polydispersity will be in the range (0,1)
1222- other values will be in the range (0, 2\ *v*), where *v* is the value
1223  of the parameter in demo.
1224
1225Dispersion parameters *n*\, *sigma* and *type* will be unchanged from
1226demo so that run times are more predictable (polydispersity calculated
1227across multiple parameters can be very slow).
1228
[3048ec6]1229If your model has 2D orientation calculation, then you should also
[990d8df]1230test with::
1231
1232    compare("-2d", "~/.sasview/plugin_models/model.py")
1233
1234Check The Docs
1235^^^^^^^^^^^^^^
1236
1237You can get a rough idea of how the documentation will look using the
1238following::
1239
1240    compare("-help", "~/.sasview/plugin_models/model.py")
1241
1242This does not use the same styling as the rest of the docs, but it will
1243allow you to check that your ReStructuredText and LaTeX formatting.
1244Here are some tools to help with the inevitable syntax errors:
1245
1246- `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_
1247- `Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_
1248- `MathJax <http://www.mathjax.org/>`_
1249- `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_
1250
1251There is also a neat online WYSIWYG ReStructuredText editor at
1252http://rst.ninjs.org\ .
1253
1254
1255Clean Lint - (Developer Version Only)
1256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1257
1258**NB: For now we are not providing pylint with the installer version
1259of SasView; so unless you have a SasView build environment available,
1260you can ignore this section!**
1261
1262Run the lint check with::
1263
1264    python -m pylint --rcfile=extra/pylint.rc ~/.sasview/plugin_models/model.py
1265
1266We are not aiming for zero lint just yet, only keeping it to a minimum.
1267For now, don't worry too much about *invalid-name*. If you really want a
1268variable name *Rg* for example because $R_g$ is the right name for the model
1269parameter then ignore the lint errors.  Also, ignore *missing-docstring*
[108e70e]1270for standard model functions *Iq*, *Iqac*, etc.
[990d8df]1271
1272We will have delinting sessions at the SasView Code Camps, where we can
1273decide on standards for model files, parameter names, etc.
1274
1275For now, you can tell pylint to ignore things.  For example, to align your
1276parameters in blocks::
1277
1278    # pylint: disable=bad-whitespace,line-too-long
1279    #   ["name",                  "units", default, [lower, upper], "type", "description"],
1280    parameters = [
1281        ["contrast_factor",       "barns",    10.0,  [-inf, inf], "", "Contrast factor of the polymer"],
1282        ["bjerrum_length",        "Ang",       7.1,  [0, inf],    "", "Bjerrum length"],
1283        ["virial_param",          "1/Ang^2",  12.0,  [-inf, inf], "", "Virial parameter"],
1284        ["monomer_length",        "Ang",      10.0,  [0, inf],    "", "Monomer length"],
1285        ["salt_concentration",    "mol/L",     0.0,  [-inf, inf], "", "Concentration of monovalent salt"],
1286        ["ionization_degree",     "",          0.05, [0, inf],    "", "Degree of ionization"],
1287        ["polymer_concentration", "mol/L",     0.7,  [0, inf],    "", "Polymer molar concentration"],
1288        ]
1289    # pylint: enable=bad-whitespace,line-too-long
1290
1291Don't put in too many pylint statements, though, since they make the code ugly.
1292
1293Share Your Model!
1294^^^^^^^^^^^^^^^^^
1295
1296Once compare and the unit test(s) pass properly and everything is done,
1297consider adding your model to the
1298`Model Marketplace <http://marketplace.sasview.org/>`_ so that others may use it!
1299
1300.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
1301
1302*Document History*
1303
1304| 2016-10-25 Steve King
[c654160]1305| 2017-05-07 Paul Kienzle - Moved from sasview to sasmodels docs
[e5cb3df]1306| 2019-03-28 Paul Kienzle - Update docs for radius_effective and shell_volume
Note: See TracBrowser for help on using the repository browser.