source: sasmodels/doc/guide/magnetism/magnetism.rst @ 6b86bee

magnetic_model
Last change on this file since 6b86bee was 6b86bee, checked in by dirk, 5 years ago

Documentation for generalised magnetic SANS with orientation of magnetisation and polarisation in line with particle orientation notation. Addresses ticket SasView?/sasview#993 and Sasview/sasmodels#113 .

  • Property mode set to 100644
File size: 8.4 KB
RevLine 
[9f60c06]1.. _magnetism:
2
3Polarisation/Magnetic Scattering
[990d8df]4================================
[9f60c06]5
[6b86bee]6(Version 2: Spherical Polarimetry in SANS: Allow for freedom in field/polarisation axis away from the detector plane,
7i.e. allow in-beam direction or oscillatory/rotational fields...)
[9f60c06]8
[6b86bee]9For magnetic systems, the scattering length density (SLD = $\beta$) is a combination
10of the nuclear and magnetic SLD. For polarised neutrons, the resulting effective SLD
11depends on the spin state of the neutron before and after being scattered in the sample.
12
13Models in Sasview, which define a SLD parameter, can be evaluated also as magnetic models introducing
14the magnetisation (vector) $\mathbf{M}=M (\sin\theta_M \cos \phi_M, \sin \theta_M \sin \phi_M,\cos\theta_M )$ and the associated magnetic SLD given by
15the simple relation $\beta_M= b_H M$, where $b_H=\dfrac{\gamma r_0}{2\mu_B}=2.7$ fm
16denotes the magnetic scattering length and $M=\lvert \mathbf{M} \rvert$ the magnetisation
17magnitude, where $\gamma = -1.913$ is the gyromagnetic ratio, $\mu_B$ is the
18Bohr magneton, $r_0$ is the classical radius of electron.
19
20It is assumed that the magnetic SLD in each region of the model is uniformly for
21nuclear scattering and has one effective magnetisation orientation
22
23The external field $\mathbf{H}=H \mathbf{P}$coincides with the polarisation axis
24$\mathbf{P}=(\sin\theta_P \cos \phi_P, \sin \theta_P \sin \phi_P,\cos\theta_P )$ for the neutrons, which is the quantisation axis
25for the Pauli spin operator.
26
27.. figure::
28    mag_img/M_angles_pic.png
29
30.. note::
31    The polarisation axis at the sample position is the determining factor and determines
32    the scattering geometry. Before and after the field at the sample position,
33    the polarisation turns adiabatically to the guide field of the instrument.
34    This operation does not change the observed spin-resolved scattering at the detector.
35    Anyway the magnetic field is the vector defining a symmetry axis of the
36    system and the magnetisation vector will orient with respect to the field.
37
38
39.. note::
40    For AC oscillating/rotation field varying in space with time, you can coupling the magnetisation
41    with the field axis via a constrained fit. This will allow to easily parametrise
42    a phase shift of the magnetisation lagging behind a magnetic field varying from time frame to time frame.
43    Anyway the magnetic field is the vector defining a symmetry axis of the
44    system and the magnetisation vector will most often orient symmetrically with respect to the field.
45
46
47The neutrons are polarised parallel (+) or antiparallel (-) to $\mathbf{P}$. One can
48distinguish 4 spin-resolved cross sections:
49
50 * Non-spin-flip (NSF) $(+ +)$ and $(- -)$
51
52 * Spin-flip (SF) $(+ -)$ and $(- +)$
53
54The spin-dependent magnetic scattering length densities are defined as (see Moon, Riste, Koehler)
55
56.. math::
57    \beta_{M, s_{in} s_{out}}  = b_H\sigma \cdot \mathbf{M_\perp}
58
59where  $\sigma$ is the Pauli spin, and $s_{in/out}$ describes the spin state of the neutron before and
60after the sample.
61
62For magnetic neutron scattering, only the magnetisation component or Halpern-Johnson vector
63$\mathbf{M_\perp}$ perpendicular to the scattering vector
64$\mathbf{Q}=q \mathbf{n}=q (\cos\theta, \sin \theta,0)$ contributes to the magnetic scattering:
65
66.. math::
67    \mathbf{M_\perp} = \mathbf{n} [\mathbf{n} \cdot \mathbf{M}] -\mathbf{M}
68
69with $\mathbf{n}$ the unit scattering vector and $\theta$ denotes the angle
70between $\mathbf{Q}$ and the x-axis.
[9f60c06]71
72.. figure::
[0cd9158]73    mag_img/mag_vector.png
[9f60c06]74
[6b86bee]75The two NSF cross sections are given by
[9f60c06]76
77.. math::
[6b86bee]78    I^{\pm\pm} = N^2 \mp \mathbf{P}\cdot(N^{\ast}\mathbf{M_\perp} +N\mathbf{M_\perp}^{\ast})
79        + (\mathbf{P}\cdot \mathbf{M_\perp})^2
80
81and the two SF channels:
[9f60c06]82
[6b86bee]83.. math::
84    I^{\pm\mp} = \mathbf{M_\perp}\cdot \mathbf{M_\perp} - (\mathbf{P}\cdot \mathbf{M_\perp})^2
85        \mp i \mathbf{P}\cdot \mathbf{M_\perp} \times \mathbf{M_\perp}^{\ast}
[9f60c06]86
[6b86bee]87with $i=\sqrt{-1}$, and $^{\ast}$ denoting the complex conjugate quantity, and
88$\times$ and $\cdot$  the vector and scalar product, respectively.
[4f5afc9]89
[6b86bee]90The polarisation axis at the sample position is the determining factor and determines
91the scattering geometry. For the NSF scattering the component of the Halpern-Johnson
92vector parallel to $P$ contributes
[4f5afc9]93
[6b86bee]94.. math::
95    \mathbf{M}_{\perp,\parallel P } = ( mathbf{P}\cdot \mathbf{M}_{\perp }) mathbf{P}
96    \text{ magnetisation component parallel to polarisation for NSF scattering}
[9f60c06]97
[6b86bee]98The component perpendicular to the polarisation gives rise to SF scattering. The perpendicular
99plane is constructed with the two vectors
[4f5afc9]100
101.. math::
[6b86bee]102    \mathbf{M}_{\perp,\perp P } = \mathbf{M}_{\perp } - (\mathbf{P}\cdot \mathbf{M}_{\perp }) \mathbf{P}
103    \text{ magnetisation component perpendicular to polarisation for SF scattering}
[9f60c06]104
[6b86bee]105and a third vector perpendicular to both $\mathbf{P}$ and $\mathbf{M}_{\perp,\perp P } $ :
106
107.. math::
108    \mathbf{O} = \mathbf{M}_{\perp} \times \mathbf{P} - \mathbf{M}_{\perp,\perp P } = [\mathbf{q}\cdot(\mathbf{M}\times\mathbf{P})(\mathbf{q}-\mathbf{P}\times\mathbf{q})]
109    \text{ vector perpendicular to polarisation and Halpern-Johnson vector for SF scattering}
110
111For symmetric, collinear spin structures ($\mathbf{M}_{\perp}^{\ast}=\matbf{M}_{\perp}^{\ast}$), $\mathbf{O}\cdot \matbf{O}^{\ast}=0$
112since  $\mathbf{M}_{\perp} \times \mathbf{P} \cdot \mathbf{M}_{\perp} \times \mathbf{P} = \mathbf{M}_{\perp,\perp P }$.
[9f60c06]113
114
[6b86bee]115Depending on the spin state of the
[9f60c06]116neutrons, the scattering length densities, including the nuclear scattering
[2c108a3]117length density $(\beta{_N})$ are
[9f60c06]118
119.. math::
[6b86bee]120    \beta_{\pm\pm} =  \beta_N \mp b_H math{P}\cdot M_{\perp }
121    \text{ for non-spin-flip states}
[9f60c06]122
123and
124
125.. math::
[6b86bee]126    \beta_{\pm\mp} =  -b_H (\lvert\mathbf{M}_{\perp,\perp P }\rvert \pm i \mathbf{q}\cdot (\mathbf{M}\times \mathbf{P}  (1-\mathbf{P}\cdot\mathbf{q}))
[2c108a3]127    \text{ for spin-flip states}
[9f60c06]128
129
[6b86bee]130with $\lvert\mathbf{M}_{\perp,\perp P }\rvert= (\mathbf{M}_{\perp,\perp P } \cdot \mathbf{M}_{\perp,\perp P })^{1/2}
131=(M_{\perp,x}^2+M_{\perp,y}^2+M_{\perp,z}^2-(M_{\perp,x} P_x+ M_{\perp,y} P_y + M_{\perp,z} P_z   )^2 )^{1/2}$.
132
133
134
135
136Every magnetic scattering cross section can be constructed from an incoherent mixture
137of the 4 spin-resolved spin states depending on the efficiency parameters before
138($u_i$) and after ($u_f$) the sample. For a half-polarised experiment(SANSPOL with $u_f=0.5$) or
139full (longitudinal) polarisation analysis, the accessible spin states are measured
140independently and a simultaneous analysis of the measured states is performed,
141tying all the model parameters together except $u_i$ and $u_f$, which are set based
142on the (known) polarisation efficiencies of the instrument.
143
144.. note::
145    The values of the 'up_frac_i' ($u_i$) and 'up_frac_f' ($u_f$) must be in the range 0 to 1.
146    The parameters 'up_frac_i' and 'up_frac_f' can be easily associated to
147    polarisation efficiencies 'e_in/out' (of the instrument). Efficiency values range from 0.5
148    (unpolarised beam)  to 1 (perfect optics). For 'up_frac_i/f'  <0.5
149    a cross section is constructed with the spin reversed/flipped with respect
150    to the initial supermirror polariser. The actual polarisation efficiency
151    in this case is however  'e_in/out' = 1-'up_frac_i/f'.
[9f60c06]152
153
154
155
156The user input parameters are:
157
158===========   ================================================================
[6b86bee]159 sld_M0       $b_H M_0$
[df87acf]160 sld_mtheta   $\theta_M$
161 sld_mphi     $\phi_M$
[6b86bee]162 up_frac_i    $u_i$ polarisation efficiency *before* the sample
163 up_frac_f    $u_f$ = polarisation efficiency *after* the sample
164 p_theta      $\theta_P$
165 p_phi        $\phi_P$
[9f60c06]166===========   ================================================================
167
[6b86bee]168
[9f60c06]169.. note::
[6b86bee]170    P.S. of Dirk:
171    This is the most general description of magnetic SANS ever written and will supersede prior art!
172    Works for fully magnetically saturated systems. If you figure out how to
173    implement an isotropic ensemble of particle magnetisation ( similar for orientations).
174    This is needed to generate two populations with spin pointing in opposite directions in order to describe
175    field-dependence correctly, i.e. the different variation of mean magnetisation vs
176    square mean quantities.
177    With proper generalised orientation distribution, you cover all "normal" use cases
178   (except of the fancy stuff one have to simulate).
179
180
181References
182----------
183
184    .. [#] R. M. Moon and T. Riste and W. C. Koehler, *Phys. Rev.*, 181 (1969) 920.
[9f60c06]185
[59485a4]186*Document History*
[990d8df]187
[59485a4]188| 2015-05-02 Steve King
[befe905]189| 2017-11-15 Paul Kienzle
190| 2018-06-02 Adam Washington
[6b86bee]191| 2019-03-29 Dirk Honecker
Note: See TracBrowser for help on using the repository browser.