#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import math import pyopencl as cl from weights import GaussianDispersion from sasmodel import card def set_precision(src, qx, qy, dtype): qx = np.ascontiguousarray(qx, dtype=dtype) qy = np.ascontiguousarray(qy, dtype=dtype) if np.dtype(dtype) == np.dtype('float32'): header = """\ #define real float """ else: header = """\ #pragma OPENCL EXTENSION cl_khr_fp64: enable #define real double """ return header+src, qx, qy class GpuCylinder(object): PARS = { 'scale':1,'radius':1,'length':1,'sldCyl':1e-6,'sldSolv':0,'background':0, 'cyl_theta':0,'cyl_phi':0, } PD_PARS = ['radius', 'length', 'cyl_theta', 'cyl_phi'] def __init__(self, qx, qy, dtype='float32'): #create context, queue, and build program ctx,_queue = card() src, qx, qy = set_precision(open('NR_BessJ1.cpp').read()+"\n"+open('Kernel-Cylinder.cpp').read(), qx, qy, dtype=dtype) self.prg = cl.Program(ctx, src).build() self.qx, self.qy = qx, qy #buffers mf = cl.mem_flags self.qx_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qx) self.qy_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qy) self.res_b = cl.Buffer(ctx, mf.WRITE_ONLY, qx.nbytes) self.res = np.empty_like(self.qx) def eval(self, pars): _ctx,queue = card() radius, length, cyl_theta, cyl_phi = \ [GaussianDispersion(int(pars[base+'_pd_n']), pars[base+'_pd'], pars[base+'_pd_nsigma']) for base in GpuCylinder.PD_PARS] #Get the weights for each radius.value, radius.weight = radius.get_weights(pars['radius'], 0, 1000, True) length.value, length.weight = length.get_weights(pars['length'], 0, 1000, True) cyl_theta.value, cyl_theta.weight = cyl_theta.get_weights(pars['cyl_theta'], -90, 180, False) cyl_phi.value, cyl_phi.weight = cyl_phi.get_weights(pars['cyl_phi'], -90, 180, False) #Perform the computation, with all weight points sum, norm, norm_vol, vol = 0.0, 0.0, 0.0, 0.0 size = len(cyl_theta.weight) sub = pars['sldCyl'] - pars['sldSolv'] real = np.float32 if self.qx.dtype == np.dtype('float32') else np.float64 #Loop over radius, length, theta, phi weight points for i in xrange(len(radius.weight)): for j in xrange(len(length.weight)): for k in xrange(len(cyl_theta.weight)): for l in xrange(len(cyl_phi.weight)): self.prg.CylinderKernel(queue, self.qx.shape, None, self.qx_b, self.qy_b, self.res_b, real(sub), real(radius.value[i]), real(length.value[j]), real(pars['scale']), real(radius.weight[i]), real(length.weight[j]), real(cyl_theta.weight[k]), real(cyl_phi.weight[l]), real(cyl_theta.value[k]), real(cyl_phi.value[l]), np.uint32(self.qx.size), np.uint32(size)) cl.enqueue_copy(queue, self.res, self.res_b) sum += self.res vol += radius.weight[i]*length.weight[j]*pow(radius.value[i], 2)*length.value[j] norm_vol += radius.weight[i]*length.weight[j] norm += radius.weight[i]*length.weight[j]*cyl_theta.weight[k]*cyl_phi.weight[l] if size > 1: norm /= math.asin(1.0) if vol != 0.0 and norm_vol != 0.0: sum *= norm_vol/vol return sum/norm+pars['background'] def demo(): from time import time import matplotlib.pyplot as plt #create qx and qy evenly spaces qx = np.linspace(-.02, .02, 128) qy = np.linspace(-.02, .02, 128) qx, qy = np.meshgrid(qx, qy) #saved shape of qx r_shape = qx.shape #reshape for calculation; resize as float32 qx = qx.flatten() qy = qy.flatten() pars = CylinderParameters(scale=1, radius=64.1, length=266.96, sldCyl=.291e-6, sldSolv=5.77e-6, background=0, cyl_theta=0, cyl_phi=0) t = time() result = GpuCylinder(qx, qy) result.x = result.cylinder_fit(pars, r_n=10, t_n=10, l_n=10, p_n=10, r_w=.1, t_w=.1, l_w=.1, p_w=.1, sigma=3) result.x = np.reshape(result.x, r_shape) tt = time() print("Time taken: %f" % (tt - t)) plt.pcolormesh(result.x) plt.show() if __name__=="__main__": demo()