#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import math from os.path import basename, dirname, join as joinpath import glob import numpy as np from sasmodels.bumps_model import BumpsModel, plot_data, tic try: from sasmodels import kernelcl except: from sasmodels import kerneldll as kernelcl from sasmodels import kerneldll from sasmodels.convert import revert_model # List of available models ROOT = dirname(__file__) MODELS = [basename(f)[:-3] for f in sorted(glob.glob(joinpath(ROOT,"sasmodels","models","[a-zA-Z]*.py")))] def sasview_model(modelname, **pars): """ Load a sasview model given the model name. """ # convert model parameters from sasmodel form to sasview form #print "old",sorted(pars.items()) modelname, pars = revert_model(modelname, pars) #print "new",sorted(pars.items()) sas = __import__('sas.models.'+modelname) ModelClass = getattr(getattr(sas.models,modelname,None),modelname,None) if ModelClass is None: raise ValueError("could not find model %r in sas.models"%modelname) model = ModelClass() for k,v in pars.items(): if k.endswith("_pd"): model.dispersion[k[:-3]]['width'] = v elif k.endswith("_pd_n"): model.dispersion[k[:-5]]['npts'] = v elif k.endswith("_pd_nsigma"): model.dispersion[k[:-10]]['nsigmas'] = v elif k.endswith("_pd_type"): model.dispersion[k[:-8]]['type'] = v else: model.setParam(k, v) return model def load_opencl(modelname, dtype='single'): sasmodels = __import__('sasmodels.models.'+modelname) module = getattr(sasmodels.models, modelname, None) kernel = kernelcl.load_model(module, dtype=dtype) return kernel def load_ctypes(modelname, dtype='single'): sasmodels = __import__('sasmodels.models.'+modelname) module = getattr(sasmodels.models, modelname, None) kernel = kerneldll.load_model(module, dtype=dtype) return kernel def randomize(p, v): """ Randomizing parameter. Guess the parameter type from name. """ if any(p.endswith(s) for s in ('_pd_n','_pd_nsigma','_pd_type')): return v elif any(s in p for s in ('theta','phi','psi')): # orientation in [-180,180], orientation pd in [0,45] if p.endswith('_pd'): return 45*np.random.rand() else: return 360*np.random.rand() - 180 elif 'sld' in p: # sld in in [-0.5,10] return 10.5*np.random.rand() - 0.5 elif p.endswith('_pd'): # length pd in [0,1] return np.random.rand() else: # values from 0 to 2*x for all other parameters return 2*np.random.rand()*(v if v != 0 else 1) def randomize_model(name, pars, seed=None): if seed is None: seed = np.random.randint(1e9) np.random.seed(seed) # Note: the sort guarantees order of calls to random number generator pars = dict((p,randomize(p,v)) for p,v in sorted(pars.items())) # The capped cylinder model has a constraint on its parameters if name == 'capped_cylinder' and pars['cap_radius'] < pars['radius']: pars['radius'],pars['cap_radius'] = pars['cap_radius'],pars['radius'] return pars, seed def parlist(pars): return "\n".join("%s: %s"%(p,v) for p,v in sorted(pars.items())) def suppress_pd(pars): """ Suppress theta_pd for now until the normalization is resolved. May also suppress complete polydispersity of the model to test models more quickly. """ for p in pars: if p.endswith("_pd"): pars[p] = 0 def eval_sasview(name, pars, data, Nevals=1): model = sasview_model(name, **pars) toc = tic() for _ in range(Nevals): if hasattr(data, 'qx_data'): value = model.evalDistribution([data.qx_data, data.qy_data]) else: value = model.evalDistribution(data.x) average_time = toc()*1000./Nevals return value, average_time def eval_opencl(name, pars, data, dtype='single', Nevals=1, cutoff=0): try: model = load_opencl(name, dtype=dtype) except Exception,exc: print exc print "... trying again with single precision" model = load_opencl(name, dtype='single') problem = BumpsModel(data, model, cutoff=cutoff, **pars) toc = tic() for _ in range(Nevals): #pars['scale'] = np.random.rand() problem.update() value = problem.theory() average_time = toc()*1000./Nevals return value, average_time def eval_ctypes(name, pars, data, dtype='double', Nevals=1, cutoff=0): model = load_ctypes(name, dtype=dtype) problem = BumpsModel(data, model, cutoff=cutoff, **pars) toc = tic() for _ in range(Nevals): problem.update() value = problem.theory() average_time = toc()*1000./Nevals return value, average_time def make_data(qmax, is2D, Nq=128, view='log'): if is2D: from sasmodels.bumps_model import empty_data2D, set_beam_stop data = empty_data2D(np.linspace(-qmax, qmax, Nq)) set_beam_stop(data, 0.004) index = ~data.mask else: from sasmodels.bumps_model import empty_data1D if view == 'log': qmax = math.log10(qmax) q = np.logspace(qmax-3, qmax, Nq) else: q = np.linspace(0.001*qmax, qmax, Nq) data = empty_data1D(q) index = slice(None, None) return data, index def compare(name, pars, Ncpu, Nocl, opts, set_pars): view = 'linear' if '-linear' in opts else 'log' if '-log' in opts else 'q4' if '-q4' in opts else 'log' opt_values = dict(split for s in opts for split in ((s.split('='),)) if len(split) == 2) # Sort out data qmax = 10.0 if '-exq' in opts else 1.0 if '-highq' in opts else 0.2 if '-midq' in opts else 0.05 Nq = int(opt_values.get('-Nq', '128')) is2D = not "-1d" in opts data, index = make_data(qmax, is2D, Nq, view=view) # modelling accuracy is determined by dtype and cutoff dtype = 'double' if '-double' in opts else 'single' cutoff = float(opt_values.get('-cutoff','1e-5')) # randomize parameters pars.update(set_pars) if '-random' in opts or '-random' in opt_values: seed = int(opt_values['-random']) if '-random' in opt_values else None pars, seed = randomize_model(name, pars, seed=seed) print "Randomize using -random=%i"%seed # parameter selection if '-mono' in opts: suppress_pd(pars) if '-pars' in opts: print "pars",parlist(pars) # OpenCl calculation if Nocl > 0: ocl, ocl_time = eval_opencl(name, pars, data, dtype, Nocl) print "opencl t=%.1f ms, intensity=%.0f"%(ocl_time, sum(ocl[index])) #print max(ocl), min(ocl) # ctypes/sasview calculation if Ncpu > 0 and "-ctypes" in opts: cpu, cpu_time = eval_ctypes(name, pars, data, dtype=dtype, cutoff=cutoff, Nevals=Ncpu) comp = "ctypes" print "ctypes t=%.1f ms, intensity=%.0f"%(cpu_time, sum(cpu[index])) elif Ncpu > 0: cpu, cpu_time = eval_sasview(name, pars, data, Ncpu) comp = "sasview" print "sasview t=%.1f ms, intensity=%.0f"%(cpu_time, sum(cpu[index])) # Compare, but only if computing both forms if Nocl > 0 and Ncpu > 0: #print "speedup %.2g"%(cpu_time/ocl_time) #print "max |ocl/cpu|", max(abs(ocl/cpu)), "%.15g"%max(abs(ocl)), "%.15g"%max(abs(cpu)) #cpu *= max(ocl/cpu) resid, relerr = np.zeros_like(ocl), np.zeros_like(ocl) resid[index] = (ocl - cpu)[index] relerr[index] = resid[index]/cpu[index] #bad = (relerr>1e-4) #print relerr[bad],cpu[bad],ocl[bad],data.qx_data[bad],data.qy_data[bad] print "max(|ocl-%s|)"%comp, max(abs(resid[index])) print "max(|(ocl-%s)/%s|)"%(comp,comp), max(abs(relerr[index])) p98 = int(len(relerr[index])*0.98) print "98%% (|(ocl-%s)/%s|) <"%(comp,comp), np.sort(abs(relerr[index]))[p98] # Plot if requested if '-noplot' in opts: return import matplotlib.pyplot as plt if Ncpu > 0: if Nocl > 0: plt.subplot(131) plot_data(data, cpu, view=view) plt.title("%s t=%.1f ms"%(comp,cpu_time)) cbar_title = "log I" if Nocl > 0: if Ncpu > 0: plt.subplot(132) plot_data(data, ocl, view=view) plt.title("opencl t=%.1f ms"%ocl_time) cbar_title = "log I" if Ncpu > 0 and Nocl > 0: plt.subplot(133) if '-abs' in opts: err,errstr,errview = resid, "abs err", "linear" else: err,errstr,errview = abs(relerr), "rel err", "log" #err,errstr = ocl/cpu,"ratio" plot_data(data, err, view=errview) plt.title("max %s = %.3g"%(errstr, max(abs(err[index])))) cbar_title = errstr if errview=="linear" else "log "+errstr if is2D: h = plt.colorbar() h.ax.set_title(cbar_title) if Ncpu > 0 and Nocl > 0 and '-hist' in opts: plt.figure() v = relerr[index] v[v==0] = 0.5*np.min(np.abs(v[v!=0])) plt.hist(np.log10(np.abs(v)), normed=1, bins=50); plt.xlabel('log10(err), err = | F(q) single - F(q) double| / | F(q) double |'); plt.ylabel('P(err)') plt.title('Comparison of single and double precision models for %s'%name) plt.show() # =========================================================================== # USAGE=""" usage: compare.py model [Nopencl] [Nsasview] [options...] [key=val] Compare the speed and value for a model between the SasView original and the OpenCL rewrite. model is the name of the model to compare (see below). Nopencl is the number of times to run the OpenCL model (default=5) Nsasview is the number of times to run the Sasview model (default=1) Options (* for default): -plot*/-noplot plots or suppress the plot of the model -single*/-double uses double precision for comparison -lowq*/-midq/-highq/-exq use q values up to 0.05, 0.2, 1.0, 10.0 -Nq=128 sets the number of Q points in the data set -1d/-2d* computes 1d or 2d data -preset*/-random[=seed] preset or random parameters -mono/-poly* force monodisperse/polydisperse -ctypes/-sasview* whether cpu is tested using sasview or ctypes -cutoff=1e-5*/value cutoff for including a point in polydispersity -pars/-nopars* prints the parameter set or not -abs/-rel* plot relative or absolute error -linear/-log/-q4 intensity scaling -hist/-nohist* plot histogram of relative error Key=value pairs allow you to set specific values to any of the model parameters. Available models: %s """ NAME_OPTIONS = set([ 'plot','noplot', 'single','double', 'lowq','midq','highq','exq', '2d','1d', 'preset','random', 'poly','mono', 'sasview','ctypes', 'nopars','pars', 'rel','abs', 'linear', 'log', 'q4', 'hist','nohist', ]) VALUE_OPTIONS = [ # Note: random is both a name option and a value option 'cutoff', 'random', 'Nq', ] def get_demo_pars(name): import sasmodels.models __import__('sasmodels.models.'+name) model = getattr(sasmodels.models, name) pars = getattr(model, 'demo', None) if pars is None: pars = dict((p[0],p[2]) for p in model.parameters) return pars def main(): opts = [arg for arg in sys.argv[1:] if arg.startswith('-')] args = [arg for arg in sys.argv[1:] if not arg.startswith('-')] models = "\n ".join("%-15s"%v for v in MODELS) if len(args) == 0: print(USAGE%models) sys.exit(1) if args[0] not in MODELS: print "Model %r not available. Use one of:\n %s"%(args[0],models) sys.exit(1) invalid = [o[1:] for o in opts if o[1:] not in NAME_OPTIONS and not any(o.startswith('-%s='%t) for t in VALUE_OPTIONS)] if invalid: print "Invalid options: %s"%(", ".join(invalid)) sys.exit(1) # Get demo parameters from model definition, or use default parameters # if model does not define demo parameters name = args[0] pars = get_demo_pars(name) Nopencl = int(args[1]) if len(args) > 1 else 5 Nsasview = int(args[2]) if len(args) > 2 else 1 # Fill in default polydispersity parameters pds = set(p.split('_pd')[0] for p in pars if p.endswith('_pd')) for p in pds: if p+"_pd_nsigma" not in pars: pars[p+"_pd_nsigma"] = 3 if p+"_pd_type" not in pars: pars[p+"_pd_type"] = "gaussian" # Fill in parameters given on the command line set_pars = {} for arg in args[3:]: k,v = arg.split('=') if k not in pars: # extract base name without distribution s = set(p.split('_pd')[0] for p in pars) print "%r invalid; parameters are: %s"%(k,", ".join(sorted(s))) sys.exit(1) set_pars[k] = float(v) if not v.endswith('type') else v compare(name, pars, Nsasview, Nopencl, opts, set_pars) if __name__ == "__main__": main()