#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import pyopencl as cl from weights import GaussianDispersion from sasmodel import card, set_precision, set_precision_1d, tic, toc class GpuCylinder(object): PARS = { 'scale':1,'radius':1,'length':1,'sldCyl':1e-6,'sldSolv':0,'background':0, 'cyl_theta':0,'cyl_phi':0, } PD_PARS = ['radius', 'length', 'cyl_theta', 'cyl_phi'] def __init__(self, qx, qy, dtype='float32'): #create context, queue, and build program ctx,_queue = card() src, qx, qy = set_precision(open('Kernel/NR_BessJ1.cpp').read()+"\n"+open('Kernel/Kernel-Cylinder.cpp').read(), qx, qy, dtype=dtype) self.prg = cl.Program(ctx, src).build() self.qx, self.qy = qx, qy #buffers mf = cl.mem_flags self.qx_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qx) self.qy_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qy) self.res_b = cl.Buffer(ctx, cl.mem_flags.READ_WRITE, self.qx.nbytes) self.res = np.empty_like(self.qx) def eval(self, pars): tic() _ctx,queue = card() self.res[:] = 0 cl.enqueue_copy(queue, self.res_b, self.res) radius, length, cyl_theta, cyl_phi = \ [GaussianDispersion(int(pars[base+'_pd_n']), pars[base+'_pd'], pars[base+'_pd_nsigma']) for base in GpuCylinder.PD_PARS] #Get the weights for each radius.value, radius.weight = radius.get_weights(pars['radius'], 0, 10000, True) length.value, length.weight = length.get_weights(pars['length'], 0, 10000, True) cyl_theta.value, cyl_theta.weight = cyl_theta.get_weights(pars['cyl_theta'], -np.inf, np.inf, False) cyl_phi.value, cyl_phi.weight = cyl_phi.get_weights(pars['cyl_phi'], -np.inf, np.inf, False) #Perform the computation, with all weight points sum, norm, norm_vol, vol = 0.0, 0.0, 0.0, 0.0 size = len(cyl_theta.weight) sub = pars['sldCyl'] - pars['sldSolv'] real = np.float32 if self.qx.dtype == np.dtype('float32') else np.float64 #Loop over radius, length, theta, phi weight points for i in xrange(len(radius.weight)): for j in xrange(len(length.weight)): vol += radius.weight[i]*length.weight[j]*pow(radius.value[i], 2)*length.value[j] norm_vol += radius.weight[i]*length.weight[j] for k in xrange(len(cyl_theta.weight)): for l in xrange(len(cyl_phi.weight)): self.prg.CylinderKernel(queue, self.qx.shape, None, self.qx_b, self.qy_b, self.res_b, real(sub), real(radius.value[i]), real(length.value[j]), real(pars['scale']), real(radius.weight[i]), real(length.weight[j]), real(cyl_theta.weight[k]), real(cyl_phi.weight[l]), real(cyl_theta.value[k]), real(cyl_phi.value[l]), np.uint32(self.qx.size), np.uint32(size)) norm += radius.weight[i]*length.weight[j]*cyl_theta.weight[k]*cyl_phi.weight[l] # if size > 1: # norm /= math.asin(1.0) cl.enqueue_copy(queue, self.res, self.res_b) sum = self.res if vol != 0.0 and norm_vol != 0.0: sum *= norm_vol/vol print toc()*1000, self.qx.shape[0] return sum/norm+pars['background'] class OneDGpuCylinder(object): PARS = { 'scale':1,'radius':1,'length':1,'sldCyl':1e-6,'sldSolv':0,'background':0, 'bolim':0, 'uplim':90 } PD_PARS = ['radius', 'length'] def __init__(self, q, dtype='float32'): #create context, queue, and build program ctx,_queue = card() trala = open('Kernel/NR_BessJ1.cpp').read()+"\n"+open('Kernel/OneDCyl_Kfun.cpp').read()+"\n"+open('Kernel/Kernel-OneDCylinder.cpp').read() src, self.q = set_precision_1d(trala, q, dtype=dtype) self.prg = cl.Program(ctx, src).build() #buffers mf = cl.mem_flags self.q_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.q) self.res_b = cl.Buffer(ctx, mf.WRITE_ONLY, q.nbytes) self.res = np.empty_like(self.q) def eval(self, pars): _ctx,queue = card() radius, length = \ [GaussianDispersion(int(pars[base+'_pd_n']), pars[base+'_pd'], pars[base+'_pd_nsigma']) for base in OneDGpuCylinder.PD_PARS] #Get the weights for each radius.value, radius.weight = radius.get_weights(pars['radius'], 0, 10000, True) length.value, length.weight = length.get_weights(pars['length'], 0, 10000, True) #Perform the computation, with all weight points sum, norm, vol = 0.0, 0.0, 0.0, sub = pars['sldCyl'] - pars['sldSolv'] real = np.float32 if self.q.dtype == np.dtype('float32') else np.float64 #Loop over radius, length, theta, phi weight points for r in xrange(len(radius.weight)): for l in xrange(len(length.weight)): self.prg.OneDCylKernel(queue, self.q.shape, None, self.q_b, self.res_b, real(sub), real(length.value[l]), real(radius.value[r]), real(pars['scale']), np.uint32(self.q.size), real(pars['uplim']), real(pars['bolim'])) cl.enqueue_copy(queue, self.res, self.res_b) sum += radius.weight[r]*length.weight[l]*self.res*pow(radius.value[r],2)*length.value[l] vol += radius.weight[r]*length.weight[l] *pow(radius.value[r],2)*length.value[l] norm += radius.weight[r]*length.weight[l] if vol != 0.0 and norm != 0.0: sum *= norm/vol return sum/norm + pars['background']